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ABSTRACT

This thesis is concerned with derivation of a macroscopic plasma

Lagrangian, and its application to the description of nonlinear three-

wave interaction in a homogeneous plasma and linear resonance oscilla-

tions in a inhomogeneous plasma.

One approach to obtain -the--Lagrangian is via the inverse problem

of the calculus of variations for arbitrary first and second order

quasilinear partial differential systems. Necessary and sufficient

conditions for the given equations to be Euler-Lagrange equations of a

Lagrangian are obtained. These conditions are then used to determine

the transformations that convert some classes of non-Euler-Lagrange

equations to Euler-Lagrange equation form. The Lagrangians for a linear

resistive transmission line and a linear warm collisional plasma are

derived as examples.

Using energy considerations, the correct macroscopic plasma

Lagrangian is shown to differ from the velocity-integrated Low Lagrangian,

by a macroscopic potential energy that equals twice the particle thermal

kinetic energy plus the energy lost by heat conduction. The generalized

variables are the macroscopic plasma cell position (Eulerian coordinates)

defined in Lagrangian coordinates, and the vector and scalar potentials
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defined in Eulerian coordinates. With the continuity and heat flow

equations treated as constraints, the Euler-Lagrange equations are shown

to be the force law and Maxwell's equations. The effects of viscosity,

heat conduction, and elastic collisions are included in this variational

principle. The corresponding macroscopic Hamiltonian, and the micro-

scopic Hamiltonian corresponding to the Low Lagrangian, are also derived.

Under the assumptions of scalar pressure and adiabatic processes,

the macroscopic Lagrangian is approximated by expansions in weak pertur-

bations of the generalized variables. The averaged Lagrangian method

is then used to derive nonlinear three-wave coupling coefficients in a

warm homogeneous two-component plasma. The effects of wave damping

are included phenomenologically in the coupled mode equations. The

general results are then specialized to make detailed quantitative

comparisons between theory and available experimental results on parame-

trically excited ion-acoustic waves.

The approximate quadratic Lagrangian is also used to estimate the

electrostatic (Tonks-Dattner) resonance properties of an inhomogeneous

plasma. The Rayleigh-Ritz procedure is applied directly to the Lagrangian

corresponding to a system of Euler-Lagrange equations. Use of an appro-

priate set of trial functions then leads to frequency and eigenfunction

estimates in excellent agreement with the existing theoretical and experi-

mental results for a low pressure positive column. Since this method

mainly involves evaluating finite integrals, and solving algebraic eigen-

value equations, it is found to be more efficient than numerically solving

differential equations, and more accurate than inner-outer expansions.
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1. INTRODUCTION

In theoretical descriptions of plasmas, three approximate models

are commonly employed. These are the cold, .the microscopic, and the

macroscopic plasma models, all of which use Maxwell's equations. To

complete the system of equations, the cold plasma model uses Newton's

force law,

dv (1.1)
m d= q(E vX B) ,(1.1)

where E and B are the electric and magnetic fields, and v, m. and

q are the particle velocity, mass, and charge of a species. The

plasma is then regarded as consisting of interpenetrating cold fluids

with charge and current densities, E qn and Z qnv, respectively, where C

sums over all particle species, and n is the particle number density.

The microscopic plasma model uses Newton's force law in (1.1) for each

particle, and the Boltzmann-Vlasov equation (Clemmow and Dougherty, 1969)

f dv
-+ v v + * V f = , (1.2)

t +  dt v

where f(x,v,t) is the Boltzmann distribution function for each particle

species. The expressions for charge and current densities now become

E qffdv and E qffvdv, respectively. The plasma is regarded as a system

of charged particles evolving under the influence of their own electro-

magnetic fields, and externally applied fields (if any). In principle,

complete solutions to the particle force law for all particles will auto-

matically generate the solution of f(xv,t) because (1.2) is a statement
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of particle conservation along the particle trajectories in a six-

dimensional phase space (xv). When it is not necessary to obtain the

particle trajectories, solutions of f(x,,t) are obtained by use of

(1.2) together with Maxwell's equations.

The macroscopic plasma model uses velocity moments of the Boltzmann-

Vlasov equation (1.2). Examples of these equations are expressed by

(3.29) and (3.46). The charge and current densities are now written as

C qn and Z qn , where zD is the drift velocity, i.e. the averaged

local velocity of a particle species [see (3.13)]. Here, the plasma is

approximated in terms of localized variables such as density, drift

velocity, pressure, and heat flux. In terms of degree of approximation,

the macroscopic model falls between the other two models.

The appropriate Lagrangians for the cold plasma model (Galloway and

Crawford, 1970) and the microscopic plasma model (Low, 1958) are already

well-known. However, the Lagrangian for the macroscopic plasma model,

that corresponds to Maxwell's equations and the moments of the Boltzmann-

Vlasov equation, has not been established. The gap will be filled in

this thesis.

The interests in developing this variational principle stem from

the fact that current theoretical investigations in nonlinear wave-wave

and wave-particle interaction properties of homogeneous plasmas, and in

linear properties of inhomogeneous plasmas, are at the limit of analytic

tractability. While a suitable variational principle does not provide

new fundamental laws, it leads to a relatively concise formulation and

easy manipulation for these otherwise difficult problems.

To obtain the suitable macroscopic Lagrangian, the first problem that

arises is the inverse problem of the calculus of variations, i.e. the

2



derivation of Lagrangians from arbitrary equations. This mathematical

approach will be examined in Section 2 in contrast to the approach via

energy considerations commonly used for physical problems. From this

general point of view, it will be shown that energy dissipation effects

can be included in variational (minimal) principles,in general, and the

results will be demonstrated with examples.

The approach of the inverse problem treats all dependent variables

as generalized variables. The plasma variational principle to be presented

in Section 3 will treat only the macroscopic plasma cell position and the

electromagnetic potentials as generalized variables. This type of formula-

tion for a system of discrete charged particles, was described in a

relativistically covariant form by Landau and Lifschitz (1969), and

in the non-relativistic form by Goldstein (1950). Extensions of these

Lagrangian densities to the microscopic plasma model to include a velocity-

distributed system of particles,.have been proposed by Sturrock (1958a)

and Low (1958). Based on Low's Lagrangia and using energy considerations,

we shall obtain the corresponding Lagrangian and Hamiltonian for the

macroscopic plasma model, with the effects of viscosity, heat conduction,

and elastic collisions takeh into account.

In applications of Lagrangians to problems involving homogeneous

plasmas, there has been progress in the areas of linear waves (Kim, 1972),

nonlinear three-wave interactions (Galloway and Crawford, 1970), wave-

background interactions (Dewar, 1970), wave kinetic equations (Suramlishvili,

1964 and 1965; Galloway, 1972), higher order nonlinear wave processes

(Dewar, 1972; Dysthe, 1974), and statistical analysis of plasma turbulence

(Kim and Wilhelm, 1972). For problems in inhomogeneous plasmas, results
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have been presented in the area of energy principles (Newcomb, 1962), and

in the use of the Rayleigh-Ritz procedure to obtain approximate solutions

(Dorman, 1969). As compared with other branches of physics, these cases

comprise a disproportionately small fraction of the theoretical effort

in plasma physics.

In this work, the new macroscopic Lagrangian will be used in two

ways. In Section 4 we shall be concerned with the general description

of nonlinear three-wave interactions in a homogeneous plasma by use of

the averaged Lagrangian technique (Whitham, 196'). These results will

be specialized in Section 5 to parametric amplification of ion-acoustic

waves to make quantitative comparisons with available experimental data.

The second application of the Lagrangian will be presented in Appendix BY

where the Rayleigh-Ritz procedure is applied to obtain approximate solu-

tions for electrostatic resonances in a low pressure positive column. It

will be shown that the results compare favorably with available experimen-

tal data and conventional numerical calculations by others (Parker, Nickel,

and Gould, 1964).

Some conclusions are drawn in Section 6, where new contributions and

future extensions of this research are briefly discussed.
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2. INVERSE PROBLEM OF THE CALCULUS OF VARIATIONS

2.1 Introduction

In the calculus of variations Hamilton's principle is applied to

the integral of a given Lagrangian density, often referred to. as the

action integral, to obtain the Euler-Lagrange equations extremizing the

action integral (see for example, Courant and Hilbert, 1966). The

inverse problem of the calculus of variations is to find the conditions

that arbitrary differential equations must satisfy to be the Euler-

Lagrange equations of a certain Lagrangian density, and to determine

an appropriate Lagrangian density from the given differential equations.

The term 'Lagrangian density' as used here will include cases with

multiple independent variables. Recent developments of a method of

studying weakly nonlinearwave propagation in distributed systems makes

the inverse problem for a system of partial differential equations of

particular interest (Whitham, 1965; Galloway and Crawford, 1970; see

Chapter 4). A general approach is required to obtain appropriate Lagran-

gian densities for systems of equations including effects of energy loss

due to .heat flow, viscosity, and collisions.

The inverse problem of the calculus of variations attracted

attention over a century ago, when Jacobi (1837) examined the character-

istic properties of an ordinary Euler-Lagrange differential equation of

second order (Kiirschak, 1906; Akhiezer, 1962). More involved problems

have since been studied. Such work includes that by LaPaz (1930), who

treated the case of one dependent variable in many independent variables

using the necessary property of self-adjointness of the Euler-Lagrange

equation. Douglas (1941) has studied the case of many dependent variables



in one independent variable, by considering the characteristic forms of

the coefficients in a system of Euler-Lagrange equations. Van der Vaart

(1969) has applied the results of Douglas (1941) to a system of ordinary

linear differential equations of second order. A survey of the litera-

ture on this approach to the inverse problem may be found in the book

by Funk (1970).

The general case of many dependent and independent variables has

been considered by Vainberg (1964). By treating the dependent variables

as points in a coordinate system of functions, the invariance of an action

integral under the variation of the functions is shown to be analogous

to the invariance of a potential under the variation of the path of inte-

gration (Tonti, 1969a). This analogy has led to definition of poten-

tiality conditions for the operators of the system of equations. For

differential equations, these potentiality conditions are then the necessary

and sufficient conditions for solutions of the inverse problem of the

calculus of variations (Tonti, 1969b).

The treatment to be-presented in Sections 2.2 and 2.3 will be con-

fined to quasilinear differential systems of first and second order,

respectively. We shall emphasize special forms of the Euler-Lagrange

differential system, following the approach used by Douglas (1941), while

generalizing to the case of partial differential equations. Since we

are looking for some scheme that generates a Lagrangian density, the

conditions for the given equations to be Euler-Lagrange equations will

be established in such a way that, once satisfied by the differential

equations, an explicit Lagrangian will be derivable. The cases of linear

and weakly nonlinear differential equations are treated as examples in

Sections 2.2.3 and 2.3.3, respectively.
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In supplement to these conditions, the nonuniqueness in the form of

the given differential system requires discussion: there are operations,

such as multiplication of the system by some matrix expressions (Davis, 1929),

and changes of the dependent variables, that can convert apparently non-

Euler-Lagrange equations to equivalent Euler-Lagrange equations. In

Section 2.4, we shall discuss one of these techniques, differential

transformation of the dependent variables. As examples, we derive

appropriate Lagrangian densities for a resistive transmission line, and

for a warm collisional plasma in Sections 2.4.2 and 2.4.3, respectively.

2.2 First Order Differential Equations

A system of first order quasilinear differential equations has the

general form,

C U + D = 0 (i=l, ... , ; , = 1, ... , M) , (2.1)

where the coefficients C. and D are explicit expressions in indepen-
1

dent variables x. and dependent variables Up, and U is written for
1 1

the derivative U /3x i.  Repeated indices of i (or j,k, ... etc.) are

summed over the N independent variables; repeated indices of a (or

., y, ... etc.) are summed over the M dependent variables. We see that,

in general, the numbers of the CT and Da are MN and M

respectively.

The inverse problem of the calculus of variations aims at deriving

a Lagrangian density, £ [= £(U~, U, xi)], that gives (2.1) as the set

of Euler-Lagrange equations obtained by extremizing the action integral,

I = dNx £(U, U, xi) , (2.2)

7



through variations of the dependent variables, U . For an arbitrary

i (UI, U~, xi), the Euler-Lagrange equations take the form,

dx alO N, M) (2.3)

where d/dx. operates on both the explicit and the implicit x -

dependences through Ui (x.) and U (x.).

Equation (2.3) is a highly specialized form of (2.1): the coefficients

Ci  andu D are functions only of the derivatives of I (U, u xi).

The necessary conditions for (2.1) to be a set of Euler-Lagrange equations

will be obtained in Section 2.2.1 by elimination of X (uC, Uf, x.) from

the expressions for q and D . More important, however, are the suffi-

cient conditions on CT and DP so that a corresponding £ (UI, Ui, xi)

exists. In Section 2.2.2, we shall establish conditions which will enable

us to solve the expressions of Co  and D for S (U, U, xi).
1 1

2.2.1 Necessary Conditions

In view of (2.3), £ must be linear in the U6 to give a set of
1

Euler-Lagrange equations of the form (2.1). We write

c= xU0 +v (2.4)

where M [=a (Ux )] and [= (U,xi)] are functions of UC  and

xi' The Euler-Lagrange equations of this Lagrangian density with respect

to U a  then become

S-+- - =O . (2.5
. U 1 x i  au
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Comparing (2.1) and (2.5) gives,

3ni i _ 6)0 6C i i D ' i  a (2.6)
1 B U axi U

The C. and D must satisfy the following equations, obtained by
1

eliminating the T and R from (2.6),1

CT + CC = 0 , , -E- + + - = 0 . (2.7)1 1 axi Ip 2mU 6U U UP

2.2.2 Sufficient Conditions

Given C43(U',x.) and D(UP,x.), we require conditions sufficient

to guarantee that (2.6) can be solved for the i 1 and ) in terms of

the Up and x.. Note that the uniqueness of solutions is not required.
1

The first equation of (2.6) represents at most M2N equations for

the MN unknowns Ml , with Up as independent variables. For l to
1 1

exist, (2.7) must be satisfied. In particular, C! = _C C,  so that

the number of distinct equations covered by the first equation of (2.6)

is reduced to MN(M-1)/2. These can be divided into N independent

groups of M(M-1)/2 equations for each i. Consider in each of these

groups the subset of equations relating Ma i and '. If we

assume a form for T R, we may then use the first expression in (2.6),

which yields

a c , -- , (2.8)
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to solve for T. and 1Y, subject to the constraint that the particular1 i

solutions-of T. and m. must satisfy
1 1

i 1 (2.9)

This self-consistency condition requires that C , C and C satisfy

the final relation of (2.7).

As a digression, it is of interest to note that this self-consistency

condition is analogous to the well-known condition that magnetic fields

are source-free. For the magnetic field, B, and the corresponding

vector potential, A, we have

V. B = 0~ B = VX A (2.10)

The analogy follows by taking a = 1, P = 2,y = 3, and

B = I 3C 3,C 2 A = M2~m M o , = -' a 3
u iU2' iu 3

(2.11)

The foregoing argument is valid for any triplet from the set Mac.

Therefore, with Inu arbitrarily chosen, and the final expression of (2.7)

satisfied, we can always use the first relation of (2.6) to solve for

i13ui', etc. Having obtained this set of particular solutions, they can

be substituted in the second expression of (2.6), together with the

given DP, to obtain M equations for the single unknown function (U P).

A solution for n exists if we have

10 U ) U (2.12)
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Use of (2.6) indicates that this condition implies that the D must be

related according to (2.7).

The consistency relation of (2.7) for triplets such as CT, CY ,

CYC6 reduces the number of independent equations in (2.6) from M(M-I)/2
i

to (M-l) for each i. This follows since use of the equations,

1 2M2 1 3
12 1 13

C 1 2 1 1 1 3 1 , (2.13)
U U U U

in the final expression of (2.7) will result in

C23 = - + A(U2 ,U3 ) (2.14)
i 6U3  2)U2

where A(U2;U 3 ) is the constant of integration. Since nR2 and JR3
i 1

also contain arbitrary functions of U2  and U 3 , because of (2.13),

it is always possible to adjust them to make L(U 2,U3) = 0. Symbolically,

we can express the result that (2.14) follows from (2.13) as

12, 13 - 23,

12, 13, 14 - 23, 24, 34,

12, 13, 14, 1M - 23, 24, ... , (M-I)M

Thus, by imposition of the third condition of (2.7), the first expres-

sion of (2.6) is reduced to only M-1 independent equations for each i.

By choosing 1 arbitrarily, M (p > 1) can then be obtained consis-

tently by use of (2.6).
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It is now clear that the relations expressed by (2.7) are the necessary

and sufficient conditions for (2.1) to be a set of Euler-Lagrange equations

of a Lagrangian density of the form given in (2.4). When expressions

for C. and Da satisfying these conditions are given, the procedure
1

for deriving the corresponding Lagrangian density will involve only

direct integrations. It should be noted that since 31 is arbitrary,1

the set of 31 and the function R are not unique. In addition to the
1

freedom in choosing , the set of a and the function n are deter-

mined only to within arbitrary functions of the x..

2.2.3 Linear Differential Equations

As an exercise, we shall derive a Lagrangian density for a system

of first order linear differential equations for which

C = c (x i ) , D = d (xi)U + e (xi) 21

The sufficient conditions of (2.7) then reduce to

acap
cCI = d - dPaC (2.16)

where the final relation of (2.7) has dropped out. We shall choose a
1

to be the form, MTU where, by (2.6), the MT are related according

to

c = M - MTa (2.17)1 i i

For convenience, we shall impose the condition MC = -Mp..
X 1

With the assumed form of 3l, we obtain by use of (2.6)

U - e(2.18)

12



Accordingly, ) assumes the form,

S= N U - eAC + n(x) , N- d )= N . (2.19)

Combining these results into (2.4) gives the Lagrangian density

1 = ciUiU + 2d U U - eU + n , (2.20)

where n is an arbitrary function of the x..
1

2.3 Second Order Differential Equations

A system of second order quasilinear differential equations can

always be transformed into a first order differential system by treating

the derivatives of the dependent variables as new dependent variables

(Courant and Hilbert, 1966). However, this approach to the inverse

problem is unsatisfactory for plasma problems because the introduction

of new dependent variables is equivalent to introducing artificial

degrees of freedom. Also, if we leave the number of degrees of

freedom unchanged, the Lagrangian density for second order differential

equations describing physical systems generally has a corresponding

Hamiltonian density, 3C. Conditions sufficient for the existence of a

Lagrangian density, J, will then also guarantee the existence of (,

and allow it to be used in such applications as evaluating nonlinear wave

coupling coefficients (Sturrock, 1960a; Harker) 1970).

For purposes of example, the system of quasilinear second order

differential equations will be assumed to have the form

13



A U + B = 0 (i = 1, ... , N; ,B = 1, ... , M) , (2.21)

where Ua  is the set of dependent variables; the coefficients A and
ij

B are functions of U , Ut, and x., and U. and U . denote theS1 i 13

first and second derivatives of U , respectively. Since UC. = U.,

the matrix A. can be assumed symmetric in the indices i and j
ij

without loss of generality.

2.3.1 Necessary Conditions

Equation (2.3) may be written

2 2 2
a U. +6 U -0 . (2.22)
6U aU P 6vBU i arU 3x. 6U

Comparing with (2.21) gives the necessary conditions for that system to

be the set of Euler-Lagrange equations of £ as

2AO 2 + , B = U + (2.23)1) 6UBU P 6uB u 1 UTP U ax 6U,
1 j j 1 1

Eliminating £ allows us to express these conditions in the form

j + jk ki + ki

k J

+. . 62i + UB6B- A+
A = A. , + - 2 + Uiij ij U iUt bYxj U

1 1

( + a 73 6 0 +A B + 1 1 _ B + _2B (2.24)
2)x k k Ua aUp bu Ij a U 2 trf kUc U U 6U

14

14



2.3.2 Sufficient Conditions

We can assume the general form of the Lagrangian density as

S= p(u,u,xj) + ya(UP,x.)U + Q(Uaxi) (2.25)

where 9 is responsible for A ij. Then it follows from the first rela-

tion of (2.23) that

2A = 2 + 2 (2.26)

where only the set (U$J are treated as independent variables. By

interchanging a and B, we see that this differential equation can

be solved only when A = A.., which is the second relation of (2.24).
ij ji31

Equation (2.26) constitutes MN(M+l)(N+i)/4 linear differential

equations to be solved for P. For p to exist, consistency among the

third order partial derivatives is required, i.e.

(2.27)

This implies that the first condition of (2.24),must be satisfied.

In the cases where either a = B or i = j, 9 can be obtained

by simple integration of (2.26). When both a P B and i 4 j, (2.26)

becomes an ultrahyperbolic differential equation with constant coeffi-

cients (Koshlyakov, Smirnov, and Gliner, 1964). Its particular solutions

can be obtained by Fourier transforms (Koshlyakov, Smirnov, and Gliner,

(1964). The general solution of 9 should include that of the homo-

geneous equation,

15



+ a = 0 (2.28)

which can be solved by separation of variables (see Appendix A). We shall

show below that this nonuniqueness in will be restricted by other

sufficient conditions.

From the second expression of (2.23) and (2.25), we obtain,

U. + - U - b a- + B (2.29)

\BU Bel - OJi bU ' ua BU Bixi v U

Since (2.29) is an identity in U, U , and x., the right-hand side

must be linear in U. Taking the derivative with respect to Ui, yields

4 aB 2 2 2
+ U + a V - b + (2-30)

the left-hand side of which is antisymmetric in a and P. The third

expression in (2.24) guarantees that the right-hand side is also anti-

symmetric in a and P. However, the fourth expression, which shows that

(2.31) is symmetric in i and j, is not sufficient to establish that

the right-hand side of (2.30) is independent of U . This requirement
1

can be obtained by differentiating (2.30) with respect to U,

+ U8 a 6 a 2 + a3 + a 2 (t231)

R bxk k a aup bUU au 06b aU' bU U B U UC cB U aUpb

This is more restrictive than the third necessary condition, and represents

limitations on in addition to the fourth.

16



Additional conditions from (2.30) for P. to exist are
i

S+ . + - 0 , (2.32)

analogous to the last expression of (2.8), where Q is defined by
1

-+j al. a (2.33)

The solution of (2.30) enjoys one arbitrary choice of , just as the

solutions of the first expression of (2.6) for 3n, for each i. But

if (2.29) is to give a consistent solution for 0, additional conditions

restricting the set of i then follow from (2.29), from the requirement

that

a-ua ( ) fu ua) (2.34)

analogous to (2.12). We have

+ U a + + eU 
Y !Uu)(611 abaau auauc au au ' 1uY au 6uC"

(2.35)

In summary, sufficient conditions for (2.21) to represent a set of

Euler-Lagrange equations of a Lagrangian density, I, of the form (2.25)

are as follows: for a solution of (2.26) for to exist, AT must
1ij

satisfy the first two conditions of (2.24); for a solution of (2.30) for

P? to exist, g must be further restricted by (2.31) and (2.32), while

A. and B must satisfy the third condition of (2.24); for a solution
j1

17



of (2.29) for 0 to exist, T, p, and Ba must be restricted by (2.35).

These conditionsas well as those of Section 2.2.2 for first order equa-

tions agree with the general forms obtained by Tonti (1969b) by poten-

tiality analysis of differential operators in function space (Vainberg,

1964; Tonti, 1969a).

2.3.3 Nonlinear Differential Equations of the Second Rank

As a demonstration of the foregoing results, sufficient conditions,

and the corresponding Lagrangian density, will be obtained for the

differential system

A.. = a°l + aTY U + a
1j ij ij ijk k '

B b + b U + b  UU+ b.U + b U' + + UbY boUU. (2.36)
1 1 ij 1 j

o ~ a
The coefficients, a , etc. and b , etc., are functions of xi; the

a. are symmetric in i and j, the bC y in p and y, and theij

bO . in (p,i) and (y,j). With the coefficients of (2.36), the equa-1j

tions of (2.21) are nonlinear and of the second rank because of the

presence of a. , aY bO43 bTY and b0"
ij ijk' i ij

Substituting (2.36) into (2.24) yields for the a0 , etc.,ij .

ao= a aO=Y a( , a?.Y = a OY
j 13 ij 1 ij 1j ijk Ljk

aC + a o Y  ap y + aYC4 (2.37)
ijk jki kij kij

and for the b , etc.,

18



bi + b = 2 ( bP- + b) = 2/ i,

ay
bOY + bo- ay ijk1b + bj a1 + (2.38)ij 1j ij x k

We can now assume the general form for 2 as

+)TYUCVupuy +1 (aT a Y Y a u% , (2.39)ijk i j k 2 j (2.39)

and choose to impose

S Y (2.40)
ijk =  jik ikj (2.)

The requirement of (2.31) reduces to

xk ij j - (2.41)

while (2.32) becomes

bO + b Ya + b4' = a a + a . (2.42)"- j\ ij ij ij

Using (2.30) we find that ap takes the form

1 = pU + pUU' , (2.43)

where p. and pi are to be obtained from the differential relations,

pT p b 13 pj y po 4 1. (2.44)xx (2.)
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The conditions of (2.35) reduce to

i 1 7 , (2.45)bC - - aB x x(

without further restricting the choices of p. and p

The general form of Q is

0 = -bU~ + qC43UU + qO4YUU + q(xi) , (2.46)

where, according to (2.29),

-qb apq- q CY _ 1 , (2.47)

and q(xi) is arbitrary.

We find that the Y are determined from (2.41) only to within an
ijk

arbitrary curl tensor, e bd9 /x , where e is the antisymmetric
kmn  13 n  m kmn

unit tensor. According to (2.44) the p. and p are both deter-
1 1

mined only to within an arbitrary tensor symmetric in a and 8.

In the special case that the set of differential equations expressed

by (2.21) are linear, the relevant sufficient conditions reduce to

aT = a C b0 + b = 2 j) b0  - bB  (3 a ij
ij 13 1 i - axx 1 ax

(2.48)

These are equivalent to those used by van der Vaart (1967), who con-

sidered the case N = 1 [Equation (16) by van der Vaart (1967)].
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2.4 Differential Transformations

In Sections 2.2 and 2.3, we assumed that the QCth equation of the

differential systems represented by (2.1) and (2.21) is an Euler-Lagrange

equation with respect to variation of U0. Now these sets of equations

are transformable, for example by change of variables, to equivalent

sets which no longer satisfy the sufficiency conditions. Solution of

the inverse problem of the calculus of variations is consequently less

restrictive than is suggested by the sufficiency conditions: it may be

possible to convert seemingly non-Euler-Lagrange equations to Euler-

Lagrange equation form by use of appropriate transformations. The

problem this poses is how to recognize when such transformation is

possible. Here we shall comment briefly on the transformations likely

to be involved. We cannot provide a general solution.

Among the range of possible transformations, those retaining the

number of dependent variables unchanged include: (a) matrix transformation

of the dependent variables; (b) matrix transformation of the differential

equations, by use of integration factors, leaving the dependent variables

unchanged (Davis, 1929); and (c) differential transformation that raises

the order of the differential equations. For a self-consistent system

of M differential equations,Method (a) involves M2  functions of x.

as the elements of the transformation matrix; Method (b) involves M2

functions of x. as matrix elements, the dependent variables, and

perhaps their first derivatives, while Method (c) involves only M

functions of x., the new dependent variables, and their derivatives.

In each of these cases, the number of functions at our disposal in

general falls short of the number of sufficient conditions to be applied.
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Consequently, we cannot expect that these methods will always be success-

ful in transforming non-Euler-Lagrange equations to Euler-Lagrange equations.

Despite their inability to guarantee successful transformation,

methods (a)-(c) are of interest in dealing with equations of forms, such

as those occurring in some physical and engineering problems, where the

number of sufficient conditions is reduced. Well-known examples can be

readily found in the cases of replacing electromagnetic field variables

by potential variables (Goldstein, 1950), and velocity variables by

Clebsch variables (Lamb, 1930), before the Lagrangian densities can be

obtained. To illustrate their use here, we shall apply a linear differen-

tial transformation to convert a first order linear non-Euler-Lagrange

system to a second order Euler-Lagrange system in Section 2.4.1. Using

the sufficiency conditions obtained in Section 2.3.3, we shall then

determine the maximum number of dependent and independent variables for

a successful transformation to be possible. As examples, a resistive

transmission line, and a warm collisional plasma, will be studied in

Sections 2.4.2 and 2.4.3, respectively.

2.4.1 Differential Transformation of Linear Differential Equations

Under the linear transformation,

uv = T (x.)V + SI (x.)V + R(x.i ) , (2.49)
1 31 1

the first order linear differential equations of (2.1) and (2.15)

become second order equations, with coefficients of the form (2.36)

given by
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a i Tj + cT. b. = c+ d + S
IJ j 1 1 j i J 1

b = ciL d S , b =c dRB + e . (2.50)

The sufficiency conditions imposed on these coefficients by (2.48)

constitute MN(M-1)(N+l)/4+MN(M+1)/2+M(M-1)/2 conditions to be

satisfied by the M 2(N+l) unknown functions, T and SP. The
1

number of unknowns will consequently be no less than that of the

conditions only when

M(M-1)(N+I)(N-2) 4M . (2.51)

When (2.51) is satisfied, the equations obtained by substituting

(2.50) into (2.48) are in general solvable for the T, SP, and

for the given coefficients c , d , and e . The resulting second

order differential equations will automatically become Euler-Lagrange

equations, with the corresponding Lagrangian density derivable using

the results of Section 2.3.3.

2.4.2 Resistive Transmission Line

The first order equations for a linear resistive transmission line,

as shown in figure 2.1, take the form,

I + V cvI v- + C = 0 L b + - + RI = 0 (2.r2)ax at at 6x

where I, V, C, L, and R denote the normalized current, voltage,

distributed capacitance, inductance, and resistance, respectively.

According to (2.16), (2.52) is not in Euler-Lagrange equation form.
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L R L R L R

Figure 2.1 Resistive Transmission Line
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With [I,V] = [U ,U2]  and If,g) = [V ,V2 , the procedure outlined in

Section 2.4.1 may be followed to give

Lv ,x (2.53)

as an appropriate transformation. The corresponding Lagrangian density

is obtained, through the use of (2.25), (2.39), (2.43), (2.44), (2.46),

and (2.48), in the form,

= + 2 + L bx ) + CL _-

S2 VF) ax ax a aat 0

SL af 2 / g 2
+ L c + + + 2 - L _ax ( t at 2 I t )t at (t

RC [gibf +f) lg +g C 2 2
2 a at x at I

The Euler-Lagrange equations of (2.54) can be shown to agree with the

result of using (2.53) in (2.52). Because the number of sufficient con-

ditions is less than the number of transformation coefficients, 
Ti

and S , (2.54) is but one example among an unlimited number of appro-

priate Lagrangian densities.

2.4.3 Warm Collisional Plasma

For small one-dimensional perturbations in a plasma with a homogeneous

immobile neutralizing positive ion background, the macroscopic equations
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E en an av avS+ -- = 0 -- + n O ,0 m -- + mvv + YP n + eE = 0
ax a0  t o0 x t x'

(25)

where m and e are the electron mass and charge; no  and PO are the

quiescent electron density and pressure; v is the effective electron-

ion and electron-neutral momentum transfer collision frequency; y is the

adiabatic index, and cO  is the permittivity of free space. The pressure

anterm, yPo a nO' results from assuming an adiabatic equation of state

for the electrons,

(P+P)(nO+n)-Y = POn0 Y (2.56)

In (2.55), the dependent variables are the electric field, E, the

electron density perturbation, n. and the electron drift velocity, v.

Application of (2.16) indicates that these equations are not in Euler-

Lagrange equation form. They satisfy (2.51), however, so that the

differential transformation defined in Section 2.4.1 can be used. To

reduce apparent complexity, it is helpful to rewrite (2.55) in terms of

normalized variables, defined by

- eE - n - vE = n vmvt p  n vt

M x
tp 0 t

Tt v- (2.57)
P X

wrt Pv[emP

where vt [= (PO/m)1 / 2 ] and [= (noe2/m) 1/2] are the electron

thermal velocity and plasma frequency, respectively. We then have, in

place of (2.55),
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-E an av ay an -S+ + 0 , + v v + Y- + E 0 (2.58)
x nT ax BT x

From (2.48) - (2.50), and (2.58), it can be shown that are appropriate

transformation,

E C11 C12 C13 f

S C C C 23

L 31 C32 C33 j hj

should have the following elements:

C -- +-a C - c - a
11 ax 12 CX a '

C -ya +c b -vc C =c
13 X T 21 C '

C d C d c v d C -a
22 N ' 23 BT ' 31 X Y

C 3 2  c e ax--+ a (2.60)
32 y ' C33 -

where a, b, c, d, and e are arbitrary constants, except that they should

make (2.59) a reversible transformation.

The corresponding Lagrangian density, obtained through using (2.25),

(2.39), (2.43), (2.46), and (2.48), may be expressed in terms of f, g,

and h as,
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bf 2 +- f ag + iag f h Ye ah
2Xax X X I ax 2 aX

/ \2 - 2
e h ag d hf

+ + + (d+e)2Y BT WT a ax aT ax aT e x aT

+(b + c - e) -h f + (c + v d) _- g + g+a - h
bX ax Y aT aT

+ f- a fh + + V~+ h (2.61)-

The Euler-Lagrange equations of (2.61) can be shown to agree with the

result of using (2.59) and (2.60) in (2.58).

2.5 Discussion

In this section, we have considered the inverse problem of the cal-

culus of variations for systems of first and second order quasilinear

partial differential equations. The approach has been to compare the

form of the Euler-Lagrange equations with that of an arbitrarily chosen

set of equations. The resulting sufficiency conditions agree with

general results obtained previously by the more abstract method of imposing

conditions of potentiality of operators in a function space (Vainberg,

1964; Tonti, 1969). By restricting ourselves to equations of quasilinear

form, we were able to determine the Lagrangian density explicitly, if the

sufficient conditions are satisfied by the given set of differential

equations. As examples, the results were applied to systems of first

order linear equations, and second order nonlinear equations.

The explicit formulation described here has led to some success in

using differential transformations to convert non-Euler-Lagrange equations

to Euler-Lagrange equation form by changing the dependent variables. The
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examples on the resistive transmission line and warm collisional plasma

served to show their importance. This operation, together with the

other transformation techniques discussed in Section 2.4, constitute

powerful mathematical ways to define appropriate generalized (dependent)

variables in a given inverse problem. This is complementary to the

procedure of choosing suitable 'geometric' and 'force' variables in

physical variational problems, described by Penfield and Haus (1967).

Our discussion of transformation techniques suggests some significant

problems for further study in the inverse problem of the calculus of

variations. For instance, recognition of equivalent systems of formally

different differential equations becomes important if the area of appli-

cation of the inverse problem is to be enlarged.

Although the mathematical approach is rigorous, the need to choose

appropriate generalized variables, and to rewrite the equations in Euler-

Lagrange equation form, reduces the practical value of our approach to

the inverse problem in those physical situations in which intuitive energy

considerations can be readily used to guess at, and establish appropriate

Lagrangian densities. The latter approach relies on the experience that

a physical system with well-defined energy can be described in terms

of Hamilton's variational principle. The trial procedure then involves

assigning generalized variables, according to the number of degrees of

freedom, before guessing a Lagrangian density that includes various

forms of kinetic and potential energies. The trial Lagrangian is then

checked by the relatively simple process of applying Hamilton's principle

to produce Euler-Lagrange equations that are the correct equations of the

problem. A small number of trial-and-error exercises may then result in

a suitable Lagrangian density.
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In anticipation of the Lagrangian applications to plasma physics,

to be discussed in Section 3, we may point out two other problems. The

first concerns the explicit distinction between dependent and indepen-

dent variables generally assumed in the inverse problem; the variation

principle established in Section 3 relies on an unorthodox arrangement

which we term the 'dual role' of the variables. This dual role can be

understood to be some implicit dependence, in the form x[y(z)], with

both x and y assuming the role of generalized variables. The exten-

sion of the present results to incorporate this dual role is a problem

that we have not had time to study in detail.

The second problem is related to the so-called 'Lagrange (or Bolza)

problem' (Rund, 1966; Bliss, 1946). This deals with the variation

principles whose solutions are to be determined under subsidiary constraints.

This type of problem immediately introduces serious practical difficulties

into the corresponding inverse problem, since there is no mathematical

rule to determine which of the given differential equations are to be

treated as constraint equations. In the corresponding physical problem,

however, no such difficulty arises once the degrees of freedom are

determined.
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3. LAGRANGIAN AND HAMILTONIAN DENSITIES FOR PLASMAS

3.1 Introduction

In this section, appropriate Lagrangian and Hamiltonian densities

will be established for the macroscopic model, in which the plasma is

described by Maxwell's equations and moments of the Boltzmann equation.

We shall first construct the Lagrangian density from energy considerations,

rather than the formal mathematical approach of Section 2, and then

verify its validity by applying Hamilton's principle to obtain the re-

quired Euler-Lagrange equations. Next, the corresponding Hamiltonian

density will be derived.

Lagrangian densities have already been obtained for plasmas under

various assumptions. In the microscopic model, in which the plasma is

described by Maxwell's equations and the Vlasov equation, an. appropriate

Lagrangian has been obtained by Low (1958). The Lagrangian in a

relativistically covariant formulation was discussed by Sturrock (195 8 a),.

who pointed out a difficulty associated with the choice of variables:

the calculus of variations distinguishes between the generalized (dependent)

and the integration (independent) variables; the description of plasmas,

however, involves the charged particle trajectory, which is conventionally

treated in Lagrangian coordinates, and the electromagnetic field, which

is conventionally treated in Eulerian coordinates. The distinction is

illustrated in figure 3.1, which shows a particle trajectory in phase

space. The Eulerian coordinates, (x,v,t), describe the particle with

relation to a fixed set of axes, whereas in the Lagrangian description,

the axes follow the trajectory and the particle location is denoted by

(x' 0o).
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/
(x+ + ,t)

(x,v,t)

0 x

Figure 3.1 In phase space, a particle trajectory (-) can

be specified by its Lagrangian (initial) coordi-

nates, (xoY. ,O), or its Eulerian (present)

coordinates, (x, t). The polarization vector,

, used by Sturrock (1958), connects the real

particle trajectory (---) to a specified tra-

jectory (-).
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To resolve this difficulty, Sturrock introduced a "field-like"

expansion of the total Lagrangian with the particle position vector

written as x + 4, where ( is the polarization vector with respect to

a specified particle position x. The case when E is defined by com-

paring the two position vectors simultaneously is also shown in figure 3.1.

Thus x becomes the integration variable for both the particle displace-

ment, 4 , and the electromagnetic field. On the other hand, Low pre-

ferred to modify the conventional formulation of the calculus of variations

in order to incorporate the two types of variables into his Lagrangian:

it is composed of two parts, one for the motion of the particles in a

given electromagnetic field, and the other for Maxwell's equations with

given particle trajectories. In the application of Hamilton's principle,

this requires that the electromagnetic potentials be treated as given

functions of particle spatial position, x , in the variations with

respect to the particle trajectory, x ( O' t), and that x be

treated as an integration variable in the variations with respect to the

electromagnetic potentials. Since the particle spatial coordinates play

the dual role of generalized and integration variables, while the

electromagnetic potentials play the dual role of given functions and

generalized variables, in what follows we shall describe this as the

"dual role" approach.

A Lagrangian analogous to that of Low (1958) and Sturrock (1958a) has

not yet been presented for the macroscopic plasma model. There have

been successful attempts at derivation for simplified models, often using

Lagrange multipliers that necessitate the use of generalized variables

not corresponding to the physical degrees of freedom. For example,
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Katz (1961) has given an appropriate Lagrangian for a one-fluid, com-

pressible plasma, with scalar pressure and adiabatic motions assumed.

He obtained Maxwell's equations and the equation of fluid motion by

application of Hamilton's principle, with the use of two Lagrange multi-

pliers to incorporate the fluid mass and charge continuity conditions. Su

(1961) has obtained a suitable Lagrangian for an inviscid, adiabatic plasma

with infinite electrical conductivity. The resulting Euler-Lagrange

equations include Maxwell's equations, number density continuity equa-

tions, and three other equations from which the correct force law can be

derived. Because he used some implicit form for the pressure term in

his Lagrangian, the number density, n, was also treated as a generalized

variable. Newcomb (1962) derived the Lagrangian for a hydromagnetic

plasma, without using Lagrange multipliers, for the cases of scalar and

axisymmetric pressure. The mass and magnetic flux continuity equations,

and the plasma adiabatic pressure state equation, were treated as subsi-

diary constraints that define the variation of the Lagrangian and result

in the correct force law.

The foregoing results (Katz, 1961; Su, 1961; Newcomb, 1962) are

characterized by the absence of the dual role of the variables used in

their formulations. In contrast, our own approach in Section 3.2 will

follow that of Low closely: the plasma cell trajectories and the electro-

magnetic potentials will be used in dual roles. The Lagrangian thus

established includes tensor pressure and elastic collisions. Following

the technique of Newcomb, the first (continuity) and third (heat flow)

moment equations are used as subsidiary constraints to show that the

Euler-Lagrange equations obtained by application of Hamilton's principle
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are the second (momentum) moment equation and Maxwell's equations. Our

reasons for taking the "dual role" Low approach, rather than the polari-

zation vector approach of Sturrock, will become clear in Section 4.2,

where we shall show that the perturbation expansion necessary to treat

nonlinear wave-wave interactions is thus greatly facilitated.

After the appropriate macroscopic Lagrangian is established through

the dual role approach, an important question arises: does this form of

Hamilton's principle, synthesized at the expense of the explicit distinc-

tion between the dependent and independent variables, form an acceptable

basis for a plasma canonical formulation that agrees with the known

plasma equations? If this can be answered affirmatively, the macroscopic,

as well as the Low Lagrangian, will be acceptable in their total form.

This constitutes our motivation to derive the appropriate plasma Hamiltonian

and canonical mechanics through the dual role approach. Furthermore, the

corresponding Hamiltonians will be readily subjected to perturbation

approximations, analogous to those applied to the Lagrangians (Low, 1958;

Sturrock, 1918a; Newcomb, 1962; Galloway and Kim, 1971; see also Section 4).

The resulting approximate Hamiltonians, although not to be derived here,

should have important applications to nonlinear plasma problems (Sturrock,

19 6 0a; Harris, 1969; Harker, 1970).

Sturrock (1958a) and Newcomb (1962) have derived Hamiltonians for

their quadratic plasma Lagrangians. In classical mechanics, if a

given .Lagrangian is at least quadratic in the derivatives of the

generalized variables, a corresponding Hamiltonian can always be

obtained (Goldstein, 1950). Obvious difficulties arise in the case of

the macroscopic Lagrangian to be derived, in which the variables play
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dual roles. Sections 3.3.2 to 3.3.4 will show how to modify the well-known

Legendre transformation and Poisson brackets so that the dual role is

embodied in a self-consistent Hamiltonian formulation. For completeness,

a Hamiltonian is derived in Section 3.3.6 from the Low Lagrangian to

facilitate a comparison between the microscopic and macroscopic models

of plasma Hamiltonian mechanics.

3.2 Lagrangian Density

Newcomb (1962) has given the following Lagrangian density, X,

1 2 P B2

SN N ' pu , y- , (3.1)

where YN and UN denote the kinetic and potential energy densities,

respectively; p is the mass density; u and P are the plasma velocity

and scalar pressure; B is the magnetic field; y is the adiabatic index,

and 10 is the permeability of free space. Gravity has been neglected,

and the hydromagnetic assumption of infinite conductivity,

E + u X B = 0 , (3.2)

has been made.

Choosing x as the generalized variable, he applies Hamilton's

principle to the total Lagrangian,

L = dx£ (3.3)

V

The variations in p, P, and B, due to that in x, are defined by the

constraint equations of mass continuity, adiabatic state, and magnetic
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flux conservation, respectively,

pdx = constant Pp- = constant , B . do = constant , (3.4)

where do denotes an area element moving with the fluid. The resulting

Euler-Lagrange equation is the appropriate force law in the hydromagnetic

approximation,

- (pu) + v. (puu) + VP - (VxB)xB = . (3.5)

With the general form of (3.1) in mind, the main part of I will

be obtained in Section 3.2.1 by integrating the Low Lagrangian in velocity

space. Use of Eulerian coordinates in Section 3.2.2 enables us to

establish the necessary corrections to complete this approximate Lagrangian.

Section 3.2.3 confirms its validity by demonstrating that the corresponding

Euler-Lagrange equations are Maxwell's equations and the force law for

macroscopic plasmas.

3.2.1 Macroscopic Approximation to the Low Lagrangian

The total Low Lagrangian, LL, has the form

LL =Elfolj o f(' fl0o' )  + f 2
V0 ' V

= m v2(O, v0, t) - q[p(x,t) - v(x , vD, t) * A(x,t)] , (3.6)

where the summation g implies more than one particle species; f is

the velocity distribution function; x and v are the particle position
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and velocity at time t; x and v are their values at t = 0;

V denotes the spatial volume occupied by all the particles under con-

sideration at time t; V0 denotes the spatial volume occupied by the

particles of a species at t = 0, as is schematically shown in figure 3.2;

m and q denote the particle mass and charge; e0 is the permittivity

of free space; E, B ,p, and A represent the electric and magnetic

fields, and the scalar and vector potentials, respectively, where

aA
E B = V X A (3.7)

Note that we have chosen to use V and Vo, as shown in figure 3.2, to

confine ourselves to a plasma temporarily enclosed in volume V at time

t, as opposed to letting V -, , as in Low's and Newcomb's work. The

double integral contains the part 6, the Lagrangian due to each particle,

whose first term represents kinetic energy and second term represents the

interaction energy of each particle with the electromagnetic field. The

second integral describes the energy associated with the free space

electromagnetic field. A careful discussion of the application of

Hamilton's principle to LL  has been given by Galloway and Kim (1971).

The variation of LL due to the variation in x (x O' ~.' t), constrained

by the continuity of particles in phase space,

f(x,v,t) dx dv = constant , (3.8)

and with the electromagnetic field treated as a given function of x,

gives the particle force law. The variations in cp and A, with x

treated as the integration variable, yield Maxwell's equations.
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ox, vt)

Figure 3.2 Particles of a species that occupy a spatial

volume V at time t are assumed to occupy

a volume V0  at t = 0. This approximation

is acceptable when t is sufficiently close

to t= O.
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In anticipation of Section 3.2.2, the integration variables in LL

may be transformed from the Lagrangian (initial) phase space (x 0 , )

to the Eulerian phase space (x,v). Applying the conservation of particles

in phase space

f(o' co) dx dv = f(x,v,t) dx dv (3.9)

transforms (3.2) to

LL= dx S
V

2

E = dv f X,v,t)( v2 - q + qv.A + E B (310)-- 2 2+ (3.10)

Equation (3.10) applies to a collisionless (Vlasov) plasma, for which

f is the smoothed velocity distribution function. The elementary volume,

or cell, dx, must be much larger than the mean particle spacing to

justify the smoothing, and much smaller than the mean free path to justify

neglect of collisions. The electromagnetic field variables are treated

as constants within dx, and represent the collective charge effects.

We shall refer to this model, used by Low, as the "collisionless micro-

scopic model".

The Lagrangian, LT, for plasmas in the "collisional microscopic

model", is identical to that of (3.10), but with different interpretations

for f, dx, E, B, p, and A: the distribution function, f, is now fine

grained; the cell, dx, roughly speaking, becomes smaller than the mean

particle spacing and larger than the size of the particles; the electro-

magnetic field variables include the microscopic particle self-fields

effective in collisions.
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Despite their similarity in form, L and L T  are not equal in

value. The difference can be determined by relating the quantities in

the two models by

(P = M + = M R , etc.,

f(x,v,t) = fM(x,v,t) + fR(x,v,t) , (3.11)

where subscript R denotes quantities which average to zero in a cell

of the collisionless microscopic model. Substituting (3.11) in (3.10)

yields the macroscopic approximations, L T  and LL, of L T  and LL as

L' L' + L" = dx(' + ") ,

V

2 2, Em 2 1 (OEM M
I= nvD2 + Tr P - qn(YM  + EM2 BM2

1AS DreD 2 2

f q(cpR - v + (3.12)f d R -R M O 2A0 M 0 .12)

where Tr represents the trace of a tensor; the macroscopic density, n,

drift velocity, gD, and pressure tensor, P, are defined by

n dv fM(x,vt) , = 1 dv fM (x,v,t)

= m dv(v-)(D D)t) (3.13)

and the size of dx corresponds to that of the collisionless microscopic

model.
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If Hamilton's principle is applied to L , the correct macroscopic

force law cannot be obtained as one of the Euler-Lagrange equations. The

discrepancies arise in two ways. First, there is no term in 1 that

accounts for the energy associated with the heat flux, q, defined by,

= dv(v-v )Iv-v 2 f(x,vt) . (3.14)

To perform the variation of the term Tr P/2, one then has to assume

q negligible. Second, the Euler-Lagrange equation resulting from varia-

in x (x ,t) is found to be correct only if the sign preceding the term

Tr P/2 in 1L is reversed. Clearly, it would be convenient if we

could prove that £" -2 Tr P. This would involve a statistical theory

of plasma fluctuations (Harker and Crawford, 1973), which may be con-

sidered as elastic multiparticle collisions, with the added complication

of elastic two-particle collisions. We shall take a much more direct

approach, however. Since we already know that the corrections should

contain -E Tr P, and may result from including energy contributions

from the plasma fluctuations and particle collisions, we shall obtain

them from energy considerations.

3.2.2 Macroscopic Potential, V

We postulate that, for each particle species, the corrections can

be considered as a macroscopic potential energy density, V, that has

two parts: a random (collisional and fluctuational) potential, UR

(when particle collisions are sufficiently frequent) and a heat transport

potential, UH, defined by,
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V = +H  , + 'OH 'JR = AVx v .P , -H= VQ , 3.15)
Av

where, as shown in figure 3.3, AV is a macroscopic volume with size

much larger than the particle mean free path and a boundary moving with

a fixed number of particles of a species; the random collisional force,

F ' and position of the particles, ,R are defined with respect to the

macroscopic force, , and the position, R, of AV, and Q is the

total density of heat energy transported across a macroscopic cell as it

moves along its trajectory, x (x,t) ,

Q = dt q[x(xO,t),t] (3.16)

To obtain an explicit macroscopic expression for VR, consider the

following equation which appears in proving the virial theorem in classi-

cal mechanics (Goldstein, 1950b),

d- dxjdv f(x,v,t)mv - x = dx dv f(x,v,t)[mv2 + (F + x] , (3.17)

AV AV

where we have used the fact that the number of particles of a species in

AV is constant. Rather than averaging over a long time period, as in

classical mechanics, we shall consider the approximation over a large

number of particles within AV. Expressing (3.17) in terms of the macro-

scopic and random quantities yields

d d
Sd v f m(vD R+ ) = AV(mnvD +Tr P+n F R)+ d fF *x

(3.18)
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ID

R 1 1V

F

Figure 3.3 The size of AV is assumed to be much larger
than the particle mean free path so that the

same particles of a species are contained in

AV for a time period much larger than the

mean particle transit time across AV. This

assumption of large aV size enables us to

justify the necessary correction to the

V-integrated Low Lagrangian. It will be seen

in Section 3.5 that the large size assumption
is not necessary for the Lagrangian of (3.22).
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where R is the random particle velocity with respect to v Since

v = dR/dt and F = mdv /dt, (3.18) simplifies to
,D

dJ dxdv f m . x = AV Tr P + d fF (3.19)

AV AV

The left-hand side of (3.19) involves d(AV)/dt. In the case when this

is zero, e.g., in a stationary plasma, combination of (3.16) and (3.13)

then gives the expected expression,

U =Tr P . (3.20)
R

This agrees with a result obtained by Gartenhaus (1961), who showed that

the collisional interaction potential of a stationary gas is proportional

to the particle thermal energy.

Combination of (3.16) and (3.20) gives a guess for £", at least

for the case when sufficiently frequent collisions can be assumed,

£" = V-U , U= Tr P + V.Q . (3.21)

Substitution of (3.21) in (3.12) then gives the total Lagrangian as

L = dx 1

V

E 2 B 2
m nv2 (3.22)0M

nvD 2 M -Tr P - Q - qn( 2  ( 2 21o (3.22)

where the subscript M will be dropped from here on.

First,. we should point out that the assumption of a stationary

plasma in obtaining (3.20) can be relaxed for the purpose of obtaining
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L in (3.22), if we let V tend to infinity. This can be seen by making

AV - dx in (3.19), and integrating dx over V -- , making the left-

hand side automatically zero because no particle now crosses the boundary

of V. Second, the assumption of sufficiently frequent collisions requires

that the size of AV be much larger than the particle mean free path. In

the following, it will be seen that this requirement is overly restric-

tive since the macroscopic quantities in (3.22) are well-defined in a

cell whose size need only be much larger than the mean particle spacing.

Further discussion of this point will be included in Section 3.4.

3.2.3 Application of Hamilton's Principle

We shall now test the validity of (3.22) by application of Hamilton's

principle. Note that L contains the generalized variables x (0t),

A (x,t), and P (x,t).

Variation with respect to A and y: The variation of L with

respect to A and y is comparatively simple since x is now treated as

an integration variable. For variations 6A and 6., which vanish on

the boundary of V and at times tI and t2, the Euler-Lagrange equa-

tions corresponding to

t2

I = dt L (3.23)

ti

take the standard form (Schiff, 1968),

a 'EA- 'L o (3.24)
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where the functional derivatives of L with respect to A and c, in

Eulerian coordinates, are defined by

S3 1 (325)

Using (3.7) in (3.22), and then applying (3.24), leads to the Euler-Lagrange

equations,

aE
- VX B = qnv , e V E = qn . (3.26)
10O 0 at D 0

These equations, together with (3.7), form the set of Maxwell equations.

Variation with respect to 2: For x variation, the Lagrangian is

simply,

LE = dx E

V

E m 2 1
S nv 2 1 Tr P - .Q -- qn( - v A) (3.27)2 D 2

where the superscript E signifies Eulerian coordinates, and the integral

of the electromagnetic field energy in (3.22) has been dropped because it

has no effect on the resulting Euler-Lagrange equation (Hill, 1991;

Galloway and Kim, 1971). The quantities vD, n, Tr P, and V . Q

are to be considered as implicit functions of x via subsidiary con-

straints. [Otherwise, the resulting Euler-Lagrange equation will be

a zero identity (Hill, 1951). ] These constraints are the first and

third moment equations derived from the Boltzmann equation (Braginskii,

1965),
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af M dv
-- + v f + -. f = C (3.28)t M dt vM

where C represents the contribution of elastic collisions. These are

the continuity and heat flow equations (Braginskii, 1965),

dn-- + nV .v = 0
dt -

t (Tr P) + Tr P V.vD P:Vv+ . q = dv (v22v - D)C . (3.29)

The dyad notation will be used for dot products of adjacent vectors and

tensors. The continuity equation is equivalent to the mass conservation

law, the first expression of (3.4), used by Newcomb (1962), but the heat

flow equation is not in the form of a conservation law such as the second

expression of (3.4).

Virtual displacement method: A modified version of the virtual dis-

placement method used by Serrin (1959) and Lundgren (1963) will now be

employed to derive the variations of L from (3.29). This method consists

of introducing an arbitrary parameter, 6, into n (x,t;e), etc. The

corresponding nonlocal and local variations are then defined as, respectively,

'( ) (,t fixed, e = 0)

6( ) = (x,t fixed, e = 0) (3.30)

For our problem, it is more convenient to use t in this role, without

introducing e.
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The nonlocal and local variations are defined in figure 3.4, from

which we can write

8'n(x,t) = n'(x',t) - n(x,t)

8n(x,t) = n'(x,t) - n(x,t) , (3.31)

with n denoting the density after the virtual displacement of

(v, t) = x-x (3.32)

Variation in vD: A schematic definition of 8'v and 8v is

shown in figure 3.5, from which we obtain immediately

, ,dx' dx d

D t -D(x 25) t )  dt dt dt

, d
6-o= 6 o- o= dt - V , (3.33)

where (3.32) has been used to obtain the first expression, and Taylor

series expansion of vD'(x ,t) at x has been used for the second

expression.

Variation in n: We shall now use the first expression of (3.29)

to obtain the virtual displacement in n. First, we perform a real

displacement, Ax(xt), of a plasma cell in a short time period, At,

with the particles of the species in the cell conserved. This operation

is illustrated in figure 3.6, which shows both Ax and . Applying

the first expression of (3.29) along the path, Ax, we obtain,
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(x',t)-

-n (xt)

n'(x,t) n (x,t)

(x,t)

Figure 3.4 The definition of nonlocal and local varia-

tions in n due to the virtual displacement

(xt). The nonlocal variation, 86n, is

defined by comparing n' with n for the

same cell, while the local variation, 8n, is

for the same coordinate x, before and after

the virtual displacement. The trajectories

of the same cell before and after virtual

displacement are denoted by - and --- ,

respectively.
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S(x t)t)

Figure 3.5 The definition of nonlocal and local variations

in zD due to the virtual displacement (xt).

The nonlocal variation, 6 D, is obtained by

comparing v D  with vD for the same cell, while

the local variation, 6v , is for the same coordi--

nate x. The trajectories of the same cell

before and after virtual displacement are denoted

by - and --- , respectively. The virtually

displaced trajectory that passes through (x,t)

is denoted by- - -
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n'(x',t)

(x't)
n'(x +Ax,t +At)

n (, txt)

Figure 3.6 The approach of a real displacement, Ax, performed

in a short time period, At, to the virtual dis-

placement, , as At diminishes to zero. Since

(3.29) describes the changes in n and Tr P/2

along the path Ax, the virtual displacements in

n and Tr P/2 are then described by (3.29) as a

special case At - 0 and Ax -.
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-+ n Z~ =o An = (x+ Ax,t) - n(x,t) (3.34)At At

Since Ax and At are arbitrary, we can let Ax ( when At * 0.

Hence by definition, An, the change of n in the real displacement,

approaches the nonlocal variation 8'n. By cancelling At in (3.34)

before approaching the limit At = 0, we obtain

An - 6 'n -n V . (3.35)

The local variation in n is obtained by subtracting .Vn from 6'n,

giving

6n = -V •((n) (3.36)

Variation in (Tr P/2 + V. Q): The foregoing procedure can be applied

to any equation linear in d/dt and v such as the second expression

in (3.29). Caution must be exercised however, for those terms which do

not contain vD explicitly. From (3.29), we have along the displacement

Ax

1 1
A(Tr P) + - Tr P V (x) + P :V(x) + (V g)At

- fv2C dv) At - m v (Ax)C dv (3.37)

When At - 0, the term (mfv2C dv/2) At will vanish if the macroscopic

displacement Ax does not significantly alter the microscopic random

processes within the cell. The term (V. q) At does not vanish: the

identity
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v. ( = (V.Q)+ DV 3.38)

implies the relation,

(v.q)At = A(v.Q) + V(x): VQ (3.39)

Substitution of (3.39) into (3.37) before taking the limit At = 0, and

A = ', gives the following nonlocal variations:

6 Tr P + V. - Tr P V . - P: V : - V:V - Mv C dv (3.40)

The local variation corresponding to (3.40) is obtained by subtracting

* V (Tr P/2 + V .Q),

6(2 Tr + V.Q)= -V. Trp+ .i) v C dv . (3.41)

The Euler-Lagrange equation with respect to x: We are now in a
position to derive the Euler-Lagrange equation from LE  by variation with

respect to x. The starting point is the integral of LE from time

t1 to t2-

I dt L(3.42)

t I

Because the integration variables are x and the time t (for fixed x),

local variations are to be used. The vector (x,t) is assumed to vanish

on the boundary of V, and at times tl and t2. Using (3.27), the
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variation of (3.42) becomes,

fE = dt 6LE

t
1

8LE = dx n[ vD2 c .A + n 6v D (myD+ qA) - 6 Tr P+ V.(3.43)

V

Substituting (3.33), (3.36), and (3.41) for 86Z, 6n, and 6(Tr P/2 + V. Q),

in (3.43), integrating by parts those terms involving ( L/ t) and V(,

dropping any surface integral that involves on the boundary of V,

and dropping any initial (tl) and final (t2 ) terms that involve _, we

obtain from (3.43) by straightforward manipulation the following result,

8L dx -mn(t + -74*P- ) n( p +

+qn( VA - D VA)- (mD +qA) + . (nv + m C dv (3.44)

Use of the dyadic relation,

vD X ( VXA) = VA - .DVA ,A (3.45)

and substitution of (3.7) and the first expression of (3.29) in (3.44),

finally gives the Euler-Lagrange equation as

dv
mn dt + V.P = qn(E+ v XB) + mv Cdv , (3.46)

which we recognize as the macroscopic force law, with general pressure

tensor and elastic particle collisions (Braginskii, 1965).



In the above derivation, Q is not restricted any further than by

its definition in (3.16). The form V Q in the integrand of L is

not sufficient to make Q disappear from the final form of 8LE , since

Q is in general nonzero on the boundary of V. In arriving at (3.44),

however, it can be shown that Q appears in the integrand of 6LE only

in the form, V . ( .VQ), and hence drops out since vanishes on

the boundary of V.

3.3 Hamiltonian Density

When the independent (integration) variables of a Lagrangian, L,

are distinctly different from the generalized variables, and L is qua-

dratic in the time derivatives of the generalized variables, the

Hamiltonian, H, can be obtained by straightforward application of the

well-known Legendre transformation (Goldstein, 1950). The canonical

Hamilton system of equations is then obtained by varying each of the

generalized variables, and their conjugate momenta, separately.

For L of (3.22), however, the dual role of the variables calls for

additional care in formulating the correct Legendre transformation. If

the momentum conjugate to x is defined as

MLE v n(mvD + qA) (3.47)
ZE Bv D=

by the use of (3.25) in the Eulerian coordinates, TE will be dependent

on x, because x is the integration variable. This violates the re-

quirement of the Legendre transformation that 6JE and ~ (= ) are to be

independent of each other. A way to avoid this difficulty is to trans-

form the integration variable from x to 2 S  for that part of L

describing the particles, so that the integration is effectively performed
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at t = 0. The dual roles played by A and C require that their

dependence on xSo be only through their explicit dependence on x (xSOt).

The momenta conjugate to the electromagnetic potentials must be defined

only in the Eulerian coordinates (x,t) (see Section 3.3.2).

The validity of the foregoing modifications to the Legendre trans-

formation will be established in Section 3.3.3, where the Hamilton equa-

tions will be shown to agree with the Euler-Lagrange equations obtained

in Section 3.2.3. After making similar changes in the definition

of the Poisson brackets, the energy equation is obtained correctly,

proving that the canonical formulation is self-consistent.

For completeness, a Hamiltonian corresponding to the Low Lagrangian

will be obtained in Section 3.3.6. The resulting total microscopic and

macroscopic energy conservation equations will be compared to help clarify

the meaning of the macroscopic potential, L.

3.3.1 Lagrangian Coordinates

In deriving their variational principles, Katz (1961) and Newcomb

(1962) used the transformations between x and extensively. These

transformation relations include, for x (~Ot), the Jacobian, J, the

transformation matrix, x.j, and its inverse matrix, Kij,

S1 xOj

J ij - x0j K (3.48)

whence it is easily shown that

J(JKji)
- JK.. Kki x ij jk = dx =Jdx , (349)ij 0ki



where 8ij is the Kronecker delta with respect to the Cartesian

coordinate indices i and j, and the summation convention has been

implied. The initial value of n(x,t) is n 0 (0). By conservation

of particles along the cell trajectory, we have

ndx = n 0 dxO , nO = Jn (3.50)

Under these transformations, the Lagrangian, L, of (3.22) becomes

L dx I + eE B2

A- --U s Y- 2 2 ,OV0  V

s n - qn 0 (P-- A) - J Tr P +V . (3.51)

The time derivative, x (= dx/dt), used above is taken with fixed ZO.

The x-dependence of A and CP in the integrand should be retained,

in keeping with the dual roles of these variables.

The Euler-Lagrange equations with respect to A and T need not

be explicitly rederived in the Lagrangian coordinates (,0,t). They

should agree with those in the Eulerian coordinates since Hamilton's

principle is invariant under transformation of integration variables

(Courant and Hilbert, 19r3). The variation of L with respect to x,

however, should be re-examined, since x is no longer the integration

variable. To do so, only the part Ls, corresponding to a particle

species,

Ls dx1 s  (3.52)

V0
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has to be considered. The standard form of the Euler-Lagrange equation

for x is then

d ( Ls

In Lagrangian coordinates, the functional derivatives of Ls with

respect to x and x have the forms

s s s s s a l

-- i =i xoj.axj X uj - ' -
1 1 j 3i. 1 1 j ij

which may be compared to those for OL/OA, etc. in Eulerian coordinates

in (3.25).

The only part-in 1- whose partial derivatives with respect to x.s 1

and x. are unknown at this point is Tr P/2 + V .Q. To obtain them,

we use the heat flow equation, but in a different fashion from that of

Section 3.2.3. In Lagrangian coordinates, (3.29) becomes

Sd (Tr P)+ 1 Tr P V x+P:V ;+ V q = (2 - 2v . x)C dv (3. 5)

where the gradient, V, is to be read as Kji /ax 0j Replacing q

by the dyad identity (3.39) converts (3.55) to the form

Tr P + V .Q - (Tr )K Xij - P Kkj ik

bx kj ik ji i P ~
-x .; xim x c dv+I v C dv

S --- ij Tr P+V Tr P+V .Q + -Tr P+V. , (3.56)
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where the third formal expression is obtained by treating Tr P/2+ V. Q

as a uniquely determined function of x .(t), xi(t), and t. Thus,

by equating the coefficients of x.i and x., we obtain

+Yx .+ V - Tr P K - P K K--

xji ik jk x. jk

ax- TrP + V -m v Cv Cdv , TrP+V7.Q2 v2Cdv . (3.57)

These relations enable us to find expressions for BL /ax. by deriving
s 1

J s/ x and s /ax.i from (3.51). After some algebra, we obtain

A - - + Jf m v. C dv

Ka +Vkaj
- jk axOj ik +  ji ax V.Q Kjk axOj I ]

BL nO(m + q (3.58)

By replacing Kji /8x 0oj by / xi, we find that the two terms involving

Q in the first expression in (3.58) cancel each other. It is now

straightforward to use (3.49), (3.50), and (3.58) in (3.53) to show that

the resulting Euler-Lagrange equation is identical to (3.46), except

for a-multiplicative factor, J.
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3.3.2 Modified Legendre Transformation

Since x is no longer formally used as an integration variable in

(3.52), the momentum variable conjugate to x for each particle species

can be properly defined as (Schiff, 1968)

L

S- = no(mx + qA) , (3.59)

where the second expression of (3.58) has been used.

The momentum variable, 9, conjugate to A, must be defined

differently. It is reasonable to let 0 have exactly the same dual

role property as A has in L. The way to assure this is to make

(Zt), rather than ( O,t), the independent variable in the definition

of C.- Thus, we have

= ,(3.60)

which, by using (3.22), may be put in the familiar form (Schiff, 1968),

= o CPV + o = . (3.61)

A momentum variable conjugate to CP does not exist, because L does

not involve bcp/bt.

Since the conjugate momenta of (3.99) and (3.61) are defined in

Lagrangian and Eulerian coordinates, respectively, the Hamiltonian must

be defined by adding contributions separately from the plasma variables

(x,1) , and the electromagnetic field variables (A,G2p). It is given

by the following modified form of Legendre transformation
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H = dO • x + dx - L , (3.62)

VO V

which is assembled in a similar form to the Low Lagrangian, LL  in

(3.6), and the macroscopic Lagrangian, L in (3.51). Substitution of

L from (3.51), and elimination of x and A/ t by use of (3.59)

and (3.61), reduce H to the form,

H=[ d[ +  + _xI + 1
V O s d 80 2 0
Vo  V

s I2- qn 12 + qn 0 CP + J  Tr P+ V ) (3.63)

Alternatively, H can be transformed to Eulerian coordinates by use of

the last expression of (3.49) and the first expression of (3.50),

H = dx ]

V

22+ I VxA12
= - qnA 2 Tr P+ V . Q+ qn + - . . (364)

By use of (3.59) and (3.61), we have from (3.64)

VD + Tr P + V . Q + qnP) + e E + e . Vp , (3.65)
(T,. 24 .0

which is the familiar form of energy density for a plasma, plus the term

V * Q. The latter represents all of the energy density lost through

heat conduction prior to time t, by a cell of a particle species, as

it moves along its trajectory.
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It is of interest to compare H with that given by Schiff for a

quantum mechanical system of charged particles in an electromagnetic

field [Schiff, 1968, equation (57.4)]

HQM = dx ,QM

y 12 jVx A 2

= I(-iV - qA) 2  + qJ + + 2 a VCP
+M M 2e0+ 2 ' (3.66)

now written in MKS units. In (3.66), Y and V. are the Schrodinger

wave function and potential, respectively, and -iV is the particle

momentum operator. With the understanding that Ii12 is equivalent to

particle number density, a term-by-term correspondence is observed

between (3.66) and (3.64), with the potential energy density V Jlj 2

corresponding to Tr P/2 + V .Q, in agreement with the interpretation of

the negative sign that the latter has in the macroscopic Lagrangian.

3.3.3 Hamilton Equations

The approach of Section 3.3.2 has been plausible. To establish

that the formulation is self-consistent, we should verify that the

Hamilton equations derived from H agree with the Euler-Lagrange equa-

tions derived from L.

Using (3.59) and (3.60), the Euler-Lagrange equations, (3.53) and

(3.24), become

EL EL i aL
- ' , A. t O . (3.67)

The variation of L of (3.51),
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6L= LL d( d[ 8A+ 8(6A) L1 (3.68)+ "A + d((a/t 8 , c3.68)
Vo V

can be put in the form

6L= d ['( .x)+ .*-x.*8' + dx[6 * +.' -6A * ,6

0  (3.69)

where (3.59), (3.60), and (3.67) have been used, and 6 (6') is the

local (nonlocal) variation defined in Section 3.2.3. The variation of

(3.62) consequently becomes

8H = - d * d"xiA 6) . (3.70)
t 6U0(3-70)

v0  V

Since the variables in H to be separately varied are x, T, A, , and

cp, it is convenient to write 8H as

6H= d *+ J gdx * 6A+ * acpi , (3.71)

V0  V

where the functional derivatives of H are analogous to those of L

given in (3.54) and (3.25).

Comparison of (3.70) and (3.71) shows that the correct forms of the

Hamilton equation for macroscopic plasmas described in terms of variables

with dual role, are

aA
BH ~ H

- 1 ' - '(3.72)

which are identical to (3.59) and (3.61), and
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- x t - .
= o (3.73)

The last two expressions of (3.73) lead to (3.26) by straightforward

differentiations of (3.64) before using (3.61). The right-hand side of

the first expression of (3.73) can be written as -# /.x. +
s 1

(a/xoj )(s /x ij). Its first term can be derived from (3.63) as

Oj s A j

xs ( --qn 0 A ) + qn0  Jmv C dv (3.74)
1 1 1

where the second expression of (3.57) has been used. Its second term

can be shown to be

Ss Ik- ik= JK JK JK-ap a - -J ap(3 
aka x xa x 'ak)x (375)

;xOj ij x0j k J xj _gi

where the first and third expressions of (3.49), and the first expression

of (3.57) have been used to obtain the first result, and the relation,

a/ax. = K. j /Bxoj, has been used to obtain the second result. It is1 1Ji

then straightforward to show that the first expression of (3.73) is equiva-

lent to (3.46) by the use of (3.75), (3.74), (3.59), (3.45), and the

relation, = v

3.3.4 Poisson Brackets

Poisson brackets are convenient in writing down the time derivative

of a physical quantity in a system that is formulated in terms of a

Hamiltonian. They must also be modified on account of the dual role of

the variables. Consider in general a physical quantity G, which is a

functional of x , A, O, , and their first derivatives. Without



loss of generality, we may write

G dx = dO + fdx EM , (3.76)

V VO V

where gEM is a function of A, Cp, and their first derivatives, only,

and contains terms that must involve x, I, their first derivatives,

and Tr P/2 + V *Q. The time derivative of G can be obtained by

accounting for the dual roles played by the variables, x, A,

and CP. in G. This requires that

dG cd dg s= 1dx dx , (3-77)

Vo  V

where, in the right-hand side, the first time derivative is defined with

A, a, and CP treated as given functions of x, and the second time

derivative is defined with x and treated as constants. Use of the

Hamilton equations, (3.72) and (3.73), transforms (3.77) to

sdt- t d .s + -f do * (3. 78)

S S

where the plasma and electromagnetic field Poissoh brackets, and the

functional fluxes, Is and , are defined by
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9 G .H G BH G P

V

-j -_ X- B(aj /ax

aA. 2

j a(A s/ax 7 at a(a_ _ t (i3A.I 3 A-x -+ +(/axj ) -t- '(BP/x) -t (3.79)

In the integrals of (3.78), s0  and S are the bounding surfaces of

V0  and V, and d0 and do are the elementary surface areas, with

vectors taken along the outward normals. The partial time derivative,

8G/6t, takes care of any explicit time-dependence that G may have in

addition to its implicit time-dependence through x, T A, Z and (P.

3.3.5 Energy Conservation Equation

Equation (3.78) can be used to formally separate the time deriva-

tive of any physical quantity into the bulk and the surface contributions,

and the plasma and electromagnetic field terms. As a demonstration that

the foregoing formulations are self-consistent, the total energy con-

servation equation is derived by substituting H for G in (3.78).

We obtain

dH + M = d (3.80)

So S

where the plasma and electromagnetic energy flux densities, ys and

ZE, respectively, are given by
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sj i[jk( ik + K k

JEM X B - eE - (3.81)

A more familiar form may be obtained from (3.80) by use of the third

expression of (3.48) and (3.49), and the second expression of (3.50).

After some manipulation, we have

dd
dt - (v Q d) + dx(V. - 0

aA
S= (P. +q) 1 X B E (3.82)

By use of the identity,

- (dx) dx(VO ) , (3.83)

and the differentiation scheme of (3.77), we can further transform (3.82)

to the following form in Eulerian coordinates,

a (-ZV.Q) + V. != 0

Et
- v D + Tr P) + P D+ S + - EXB (- E) (3.84)

Since 4 - E V. Q is the energy density in the plasma at time t, (3.81),

to which (3.84) is equivalent, is the correct expression of energy con-

servation in the mixture of Eulerian and Lagrangian coordinate systems.
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It is also possible to derive (3.84) by evaluating a/Bt from (3.65),

and then using (3.20), (3.46), and Maxwell's equations.

The derivation of (3.84) completes our development of a self-

consistent Hamiltonian description of a plasma in the macroscopic

approximation; the difficulties associated with the dual role of the

variables in the description of the field-particle system, originally

pointed out by Sturrock (1958a), have been resolved. Since the Low

Lagrangian also assumes 'dual role, the microscopic Hamiltonian descrip-

tion of a Vlasov plasma can also be established in a similar fashion, as

will be shown briefly in the next section.

3.3.6 Microscopic Hamiltonian Density

By the use of the Low Lagrangianin (3.6) and (3.10), the conjugate

momenta can be defined in forms analogous to (3.59) and (3.60) as

LL - m +qA
S(oo, t) , mx qA(xt) ,

aL aL F LV: B
a( x,t) A/t) = -A/at/ - [ o ,V4 A t (3.85)

where the second expression for _ follows because * does not involve

a/bx0 and a/VO terms.

The corresponding Hamiltonian is defined analogously to H as in

(3.63),

HL = dv f( , x + dxa - LL (3.86)

V0  V
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After some manipulation, this takes the form

HL E dx~ dvo f (O,)h +  dIx 2 0  .*

V0  V

1 2
h 2 -qm + q.

The Eulerian form of HL  can be obtained from (3.87) by use of (3.9),

HL = dx L ,

V

L f ,vt v2 + q + 2 + + eEvP . (3.88)L= 2 2 2p 0

With the definitions of (3.85), the Euler-Lagrange equations of LL

are

L L L L
Ax - A at ' cp (3.89)

These can be shown to represent the microscopic particle force law and

Maxwell's equations. Taking the variation of HL, and using (3.89),

the Hamilton equations are easily obtained as

aHL  aA HL  OHL 2 HL HL

tx t - A a cp =

(3.90)

Since HL  does not involve the derivatives of x and with

respect to x: and v0' it suffices to consider a physical quantity,
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G, for plasma with the same simplification. We may write

G = dx (x, ; , A,9Cp)

V

x d vZfd o f(o,O) s(x,_) + (dx E(A,,C) . (3.91)

VO V

The expression for dG/dt analogous to that of (3.78) is then obtained

as

dtG - GH+LG) - d *FE (3.92)LI P I L EM V ;.- '.
V

where the microscopic Poisson brackets, and 'f j, are defined by

GH f(Lx=) dG* - *

V
O

($G BH _G WHL MG Sm
G, H dx +

V

- + + (393)
andE j at a(apAax.) a a(mpax. at a(acax) (3-93)

The energy conservation equation in the microscopic plasma model is ob-

tained by replacing G by HL  in (3.92). We obtain

dH LA
L 1

+ d IL = O L - 0 t X B - eE "7 (3.94 )

dt ko at ( 3.94
V

By use of (3.88), the following is obtained from (3.94)
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/7

-< I

dxI

(b)

,H / -oo

(b)

The particle thermal motion then gives rise to momentum

and energy transfer across do.
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(dx L) + dx(V . = 0 . (3.9dt XIL

A comparison of the energy conservation equations in the microscopic

and macroscopic models, (3.99) and (3.82), respectively, can be found

in Section 3.4.3.

3.3.7 Entropy for Plasmas

In this section the Lagrangian and Hamiltonian formulations have

been developedso far,for the purpose of obtaining self-consistency and

consistency with the well-known equations describing plasmas in the

macroscopic model, e.g. the force law, Maxwell's equations, and the

energy conservation equation. Now, the dual role approach has resulted

in a canonical formulation of plasma dynamics in which the plasma and

electromagnetic field variables are all treated as canonical variables.

It is proposed that these canonical variables may also be effectively

used to express other plasma quantities of interest, such as the appro-

priate plasma entropy.

The question of whether the Gibbs or the Boltzmann H-function is

the correct definition for a many-particle system with arbitrary inter-

particle forces, has been discussed by Jaynes (1965).. He concluded

that an appropriate definition of entropy must include all of the degrees

of freedom that we intend to use for the physical system. In this

section, the number of degrees of freedom equals the number of generalized

field-like variables. Thus an appropriate expression for entropy in the

macroscopic plasma model can be obtained only in terms of all of the

generalized variables and momenta. Since the Boltzmann H-function, in
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its hydrodynamic form (Braginskii, 1965),

S = n , S = n (Tr P) (3.96)

is defined without including the degrees of freedom associated with the

electromagnetic field variables, it clearly does not represent the total

entropy of a plasma in the macroscopic model.

Consequently, the Boltzmann H-theorem is likely to be violated in

plasmas whenever the process involves an appreciable change in the electro-

magnetic field energy. This conclusion agrees with recent results of

Jaynes (1971), who has shown that the necessary condition for violating

the Boltzmann H-theorem is that the initial kinetic energy associated

with particle velocities, both drift and random, be greater than the

equilibrium kinetic energy. The difference is then converted into

potential energy, associated with particle interaction forces, both

collective and random, during the evolution towards equilibrium.

An important question which we have not had time to pursue is the

nature of an appropriate expression for plasma entropy based on the

canonical models established in this section.

3.4 Discussion of the Macroscopic Potential, V

In this section, we have been mainly concerned with a rigorous

verification of the Lagrangian and Hamiltonian formulations for a plasma

in the macroscopic model. However, in order to obtain the correct

macroscopic Lagrangian, a heuristic argument that assumes sufficiently

frequent particle collisions was used in Section 3.2.2.
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This assumption was in turn found to be overly restrictive because

the macroscopic Lagrangian and Hamiltonian, verified in Sections 3.2.3

and 3.3.3, respectively, are equally applicable to a collisionless

macroscopic model when the moments of the Vlasov equation are appro-

priate. Therefore, it is of great interest to find a reasonable

explanation for the necessity of introducing U of (3.21) also for

the collisionless macroscopic plasma model. We shall proceed by con-

sidering the relation of V to viscosity and heat conduction first.

3.4.1 Relation of V to Viscosity and Heat Conduction

According to (3.21), V represents twice the thermal energy density

of a particle species plus the energy density lost due to heat conduc-

tion by a macroscopic plasma cell, as it moves along its trajectory.

The relation of V to viscosity and heat conduction can be further

demonstrated by considering the particles of a species in a macroscopic

cell, dx, that has a size much larger than the mean particle spacing

and follows some trajectory in the plasma. By the use of (3.83), (3.29),

and (3.38), the total time derivative of V within dx is given by

S(dx U) = dx -2P:Vv +m(v 2v ,v)C d + V- 2q , (3.97)
dt Iat (

The first term in the right-hand side brackets represents twice the time

rate of heat generation in dx due to viscosity and mechanical compression

(Braginskii, 1965). The second term is twice the time rate of heat

generation in a particle species resulting from collisions with particles

of other species. The third term contains twice the rate of energy

gain due to heat conduction.
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If (3.97) is integrated over V, before summing over all species of

particles, the collisional term will drop out because of conservation of

energy and momentum in elastic collisions. Equation (3.97) then becomes

d- . Q+ -2q (3.98)

V V

The phenomena of viscosity and heat conduction, which are usually regarded

as dissipative, are being compensated for. The total energy of the plasma

in the macroscopic model, as denoted by H in (3.63)-(3.65), is con-

served through the inclusion of -V in X' of (3.12).

3.4.2 Loss of Particle Discreteness in Applying Macroscopic Approximation

Equations (3.97) and (3.98) are applicable also in the case when

collisions are negligible, e.g. in the macroscopic approximation

of a Vlasov plasma with the size of dx much larger than the mean

particle spacing. In this case, the argument of Section 3.2.2 that leads

to the expression for U is no longer appropriate because the assumption

of frequent particle collisions within dx is no longer valid.

The following question consequently arises: why is it still necessary

to include V in 1L, in the macroscopic approximation of a Vlasov

plasma, to obtain the correct macroscopic Lagrangian, L, of (3.22),

now that UR  in (3.15) can no longer be considered as the energy

associated with particle collisional interactions? This question suggests

the following argument; that it is actually the loss of particle dis-

creteness in applying the macroscopic approximation of (3.12) which must

be compensated by the correction expressed by (3.15).
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In the collisionless microscopic model, the trajectory of each

particle is, in theory, to be solved. When the Low Lagrangian is

written, the cell dx is used for the purpose of summing the contribu-

tions of particles within dx. Owing to the assumed particle continuity

in phase space, the bounding surface of dx in this model is considered

completely flexible; if dx is cubic at time t, we can, in theory,

always deform the shape of dx to include the same particles at some

later time. This definition of dx is illustrated in figure 3.7(a),

which implies that, in the microscopic model, as long as the particle

trajectories are solved, there is no momentum and energy transfer

across the flexible boundaries of dx. In the macroscopic model, however,

particles of the same species are indistinguishable. Only the spatial

coordinates of the macroscopic cell, dx, can be used to identify the

plasma, as shown in figure 3.7(b). Although moving with the drift velo-

city, D' the macroscopically smooth boundaries of dx are penetrated

by particles due to thermal motion. This then gives rise to the well-

defined outward macroscopic momentum and energy transfers V * P dx and

V *q dx, rexpectively, from dx. Furthermore, since elastic collisions

conserve momentum and energy, they do not affect these macroscopic trans-

port phenomena. In terms of these momentum and energy transfers, the

dynamics of the cell, dx, and that of a cell, BV, introduced in

Section 3.2.2, become identical. The macroscopic potential energy of

(3.15) must correspondingly be introduced for a collisionless macroscopic

plasma.
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3.4.3 Definitions of Plasma Cell Boundary

That the microscopic and macroscopic models define the boundary of

a spatial volume differently can also be seen by comparing the micro-

scopic and macroscopic energy conservation equations, (3.95) and (3.82),

respectively. We see that the difference between the microscopic and

macroscopic energy flux densities, !L in (3.94) and F in (3.82),

respectively, is the flux density, E (PZ -+q), associated with

particle thermal motion. Mathematically, this flux density is absent

in _L, because the microscopic Hamiltonian, HL in (3.87), does not

contain any derivatives of x and _ with respect to x and v

Physically, this difference between (3.95) and (3.82) is attributable

to a difference in defining the microscopic and macroscopic plasma cell

boundaries.

Consider the time derivatives of HL  in (3.88) using two different

definitions of the volume, V. First, define V as a stationary volume.

We have,

/ 2
HL + xxd-2+ q + + e * , (3.99)

St at at 0 2 '
V 2

which can be reduced to the macroscopic energy conservation equation,

(3.82), by use of the Vlasov equation, Maxwell's equations, and integra-

tion over velocity space (Van Kampen and Felderhof, 1967). Second,

define the boundary of V as moving with the enclosed particles, so that

the Liouville theorem can be applied. We then have

d xdv f(x,vt) = ddx dvo f(x0,0) = constant , (3.100)

V V0
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because of (3.8). The total time derivative now becomes,

dHL dv d dx--+ B 2 +
d L- dx dv f my *+d( fdx(--+ + E + Vp) (3.101)

V V

which can easily be reduced to the microscopic energy conservation equa-

tion in (3.95) by use of the particle force law, Maxwell's equations,

and integration over velocity space.

Since these energy conservation equations, (3.95) and (3.82), are

also derivable from their corresponding Hamiltonians, (3.87) and (3.63),

which are in turn derived from the corresponding Lagrangians, (3.6) and

(3.51), it is seen that the difference between the Low Lagrangian, LL,

and the macroscopic Lagrangian, L, is to reflect the difference in

defining the microscopic and macroscopic volumes (or cells) and their

boundaries.

3.4.4 Relations Among the Variational Principles of Various Models

The arguments of Sections 3.2.2 and 3.4.1 - 3.4.3 are helpful for

the purpose of understanding the macroscopic Lagrangian, L, and potential

energy density, U. The relation between these viewpoints can be under-

stood from figure 3.8, which compares the plasma variational principles

of the collisional and collisionless microscopic models defined in

Section 3.2.1, and the macroscopic model. Procedure 1A involves dropping

the random terms defined in (3.11) to relate LT to LL, while

Procedure IB involves only smoothing within the macroscopic cell, dx,

as described in (3.12), to obtain LT from LT, by keeping the quadratic

random terms. Procedure 2 reflects the difference in definitions of

the plasma volume, V, or cell, dx, in the microscopic and macroscopic
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Microscopic T T Particle continuit Liouville's
in Phase Space Law

1A 1A 1A 1 1B

CollisionlessEc .. P. Particle Force LawCollsionessECE H L.T. L LP article.i Vasov Boltzmann
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Figure 3.8 Relations among the variational principles of various plasma models. Here

LT and HT  represent the total Lagrangian and Hamiltonian, respectively,

in the collisional microscopic model; LL and H L  represent the (Low)

Lagrangian and Hamiltonian, respectively, in the collisionless microscopic

model; H.P. represents Hamilton's principle; L.T. represents the Legendre

transformation, and E.C.E. represents the total energy conservation equation.



plasma models, as discussed in Section 3.4.3, with regard to the energy

conservation equations in the two plasma models. In the case of a

collisional plasma, Procedure 3 represents the heuristic approach of

Section 3.2.2 that led to the appropriate expression of U in (3.21).

For a collisionless plasma, Procedure 4 represents the argument of

Section 3.4.2 that discusses the loss of particle discreteness when we go

from the microscopic model to the macroscopic model, and the dynamic

equivalence between the macroscopic cells of the collisionless and

collisional plasmas, so that the introduction of 1 is seen to be

necessary also for the collisionless macroscopic model.

All of these arguments should be considered less rigorous, for the

purpose of proving the validity of L of (3.22), than the rigorous

verification by application of Hamilton's principle in Section 3.2.3.

These different viewpoints do, however, converge to the conclusion that,

in general, the macroscopic potential energy density, 1, is a result

of the combined contributions of plasma fluctuations (which is equiva-

lent to elastic multiparticle collisions), elastic two-particle collisions,

the loss of particle discreteness, and a redefinition of the plasma

cell, d x, in the process of making the macroscopic approximation.

3.5 Discussion

The principal contributions of this section verification of an

appropriate Lagrangian density in Section 3.2.3 and Hamiltonian density

in Section 3.3.2 for the macroscopic plasma model, including a pressure

tensor, heat conduction, and elastic particle collisions. In Section 3.3.2,

it was shown to be necessary to introduce a macroscopic potential energy

density ) (= Tr P+ V .Q). In order to obtain the Hamiltonian density,
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it was necessary to modify the conventional Legendre transformation to

conform to the dual role of the generalized variables. Low's Lagrangian

(Low, 1958) shares the same property; the modified Legendre transforma-

tion was used successfully to derive a corresponding Hamiltonian in

Section 3.3.6. The modified form of the Hamilton equations and Poisson

brackets presented in Sections 3.3.3 and 3.3.4 may have further interesting

implications in the canonical formulation of plasma dynamics.

The plasma model used in this section is, of course, a macroscopic

approximation to the microscopic model described by the Boltzmann

equation, or the Vlasov equation when collisions are negligible. The

Euler-Lagrange equations, (3.26) and (3.46), consequently have a one-

to-one correspondence with those of the Low Lagrangian. The continuity

of particles in phase space, (x,v), is used by Low to constrain the

variation with respect to the particle trajectory, x (:,ov ,t), while

here the first (particle continuity) and third (heat balance) moment

equations are used to constrain the variations with respect to the

plasma macroscopic cell trajectory, x(xo,t). That only two moment

equations are sufficient here does not imply that the mathematical system

is closed at the second order moment equation. What we have done is to

apply Hamilton's principle to a mathematically open system of equations:

the Maxwell equations, and the moment equations. The latter are not

truncated, since q appears in the heat flow equation, and can only be

obtained by use of higher order moment equations. In practice, trunca-

tion will be accomplished by making some arbitrary assumption about q,

typically q = 0.

Whenever the scale length of variation of the macroscopic quantities

becomes comparable with the mean particle spacing, the results presented
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in this section for the macroscopic model becomes questionable. In addi-

tion, the assumption of elastic collisions neglects excitation, ioniza-

tion, and recombination phenomena, and electromagnetic radiation

associated with charged particle collisions (bremsstrahlung). Never-

theless, the variational principle developed here is appropriate to a

multicomponent plasma, including neutral components.

In later sections, we shall apply our results to a number of plasma

problems involving perturbation expansions. While these are straight-

forward for v and n (Newcomb, 1962), difficulty arises in connection

with the term Tr P/2 + V *Q in S. Inspection of the heat flow equa-

tion in (3.29), reveals that it is not self-consistent: even with an

explicit form given for C, we have to solve for all of the elements of

P as well as the components of q; these depend on higher order moment

equations. Even when truncation at a specified moment of the Boltzmann

equation is assumed, the heat flow equation is not generally equivalent

to some constant of motion for a particle species. For the case in which

q and C are neglected, approximate expressions for P in terms of

the perturbation in x are generally impossible to derive mathematically

(see Section 4.2.2). It is not surprising that only problems in which

collisions between different particle species are neglected, and adiabatic

processes are assumed to occur with either a scalar or axisymmetric

pressure, have been successfully studied in terms of perturbation expan-

sions. Such problems form the subject of Section 4.
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4. THREE-WAVE INTERACTIONS: THEORY

4.1 Introduction

In this section, we shall show how the macroscopic Lagrangian ob-

tained in Section 3 can be applied to the description of nonlinear

wave-wave interactions in homogeneous plasmas. After developing a

perturbation expansion of the Lagrangian, the method of averaged

Lagrangians will be employed to derive general coupled mode equations.

In Section 5, these equations will be specialized to a number of cases

involving parametric amplification of ion-acoustic waves for which

experimental data are available.

The use of Lagrangians in describing nonlinear wave phenomena

was considered by Sturrock in 1961. He showed that in a conservative

distributed system the time-averaged Poincare invariants, which he

later extended to the case of field variables (Sturrock, 1962), are

equivalent to power-balance relations of the type well-known to electri-

cal engineers as "Manley-Rowe relations" (Penfield, 1960). These results

were extended by Whitham (1965) who averaged the Lagrangian in such a

way as to remove rapidly varying terms, but conserve the slow variations

in amplitude, frequency, and wave vector characteristic of a wave train

in a weakly nonlinear medium. Vedenov and Rudakov (1965) used this

approach to describe the interaction between ion-acoustic and Langmuir

waves in a plasma. Using Low's Lagrangian (Low, 1958) and its pertur-

bation approximation, several cases were examined by Suramlishvili,

who derived the wave coupling coefficients for interactions between Langmuir

and ion-acoustic waves (Suramlishvili, 1964), between one transverse

and two longitudinal waves (Suramlishvili, 1969), between Alfvn and
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whistler waves (Suramlishvili, 1967), between Alfvn and ion-acoustic

waves (Suramlishvili, 1970), and among magnetoacoustic waves

(Suramlishvili, 1971). A variety of general results have been established

by Galloway (1972) and Dysthe (1974), using the averaged Lagrangian

method. In particular, the former demonstrated that the energy conservation

equation may be used to derive the Manley-Rowe relations, and the

coupled mode equations describing wave-wave interactions. He has also

shown that the wave energy and energy flux follow directly from the

energy and energy flux terms quadratic in the perturbations, while the

nonlinear wave coupling coefficient follows directly from the term in

the Lagrangian cubic in the perturbations. Similar general results were

employed by Boyd and Turner (1972b), who used Low's Lagrangian to examine

the generation of longitudinal plasma waves by two high frequency electro-

magnetic waves in a warm field-free plasma, and the interaction of

three electromagnetic waves in a cold magnetized plasma. This approach

will be followed in Section 4.3.

Generalizations of the averaged Lagrangian method to nonlinear plasma

phenomena other than wave-wave interactions have been made. Using a

hydromagnetic Lagrangian derived by Newcomb (1962), Dewar has shown that

the interactions between the wave and the slowly varying background

plasma may be derived by use of Hamilton's principle (Dewar, 1970).

Dougherty (1970) has obtained ray tracing and coupled mode equations, and

demonstrated the conservation of wave action in a relativistically

covariant formulation. Four-wave interactions, self-action effects, and

sideband decay phenomena have been treated in the paper by Dysthe (1974)

mentioned above. Derivations of the wave kinetic equation have been
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supplied by Suramlishvili (1964; 1965) and Galloway (1972); the latter

has also provided a description of quasilinear wave-particle inter-

action. A Lagrangian theory for nonlinear wave-packets propagating in

a collisionless plasma has been developed by Dewar (1972) which describes

the nonlinear frequency shift, Landau damping, and modulational sideband

instabilities.

It will be clear from the foregoing remarks that the averaged

Lagrangian method has been utilized to discuss many of the significant

nonlinear phenomena occurring in plasmas. It has the merits of concise-

ness and efficiency in the analysis, and gives considerable insight

into the physical mechanisms involved.

4.2 Perturbation Approximations to L

Prior to its use in Section 4.3, we shall expand the Lagrangian,

(3.22), in terms of perturbations in the generalized variables, x, Cp

and A, up to the third order. Similar to the well-known approach for

the macroscopic Lagrangian (Newcomb, 1962), the perturbations in n,

ZD1 and Tr P/2 + V .Q will be considered as due only to those in the

generalized variables. Denoting the perturbed and unperturbed Lagrangians

by L' and L, respectively, we write

LI = L + L1 L2 + L+ ... , L i Idx 'Li (4.1)

V

where Li  denotes the Lagrangian ith order in perturbations. The qua-

dratic Lagrangian, L2, will provide the first order equations that

determine the linear wave properties, and the cubic Lagrangian, L3' will

lead directly to the nonlinear coupling coefficients among the waves.
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4.2.1 Definition of Perturbations

The perturbations in the generalized variables are defined as,

x + xt) CP, c P+ Y1  A'= A+ A (4.2)

where (x, P), A) and (A 41' A~) are the unperturbed and perturbation

variables, respectively. Figure 4.1 illustrates the definition of ~,

which is analogous to the particle displacement vector defined by Sturrock

(1958a) and Low (1958), and the macroscopic cell displacement vector

defined by Newcomb (1962). The quantities (cp, A) and (cp1 A ) are

considered as functions of the Eulerian coordinates (x,t). consistent

with their dual roles discussed in Sections 3.1 and 3.2.1.

The perturbed Lagrangian differs from-the unperturbed Lagrangian

(3.22) due to two factors: first, the presence of , 91' and A1  at

a given , and second, the use of the integration variable x rather

than x. Thus the perturbed Lagrangian may be written as

=L' dx' £,

V

•2' 2

'. Tn v2 1 Tr P" - 9*Q -qn" D'*A + O B20
D 2 2 2pO

where the summation applies to the particle species. In (4.3), and what

follows, primed and unprimed quantities are functions of x' and x

respectively, unless otherwise noted.

Imposing the condition that the particles are conserved in the

process of applying perturbations, implies that,
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Sn( ,t)

Figure 4.1 The definition of perturbation in the macroscopic

plasma cell position from x to x'. The perturba-

tion is performed in such a way that the number of

particles of a species in the cell is fixed. The

perturbed and unperturbed cell trajectories are

denoted as and ------ , respectively. The cell

velocities before and after perturbation are denoted

by v.(xt) and v(x',t), respectively. The velocity

of the cell that is at (,t) after perturbation is

denoted by v(:t).
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ndx = n'dx (4.4)

while the Jacobian, J, of the transformation from x to x is

dx

dx

The integral in (4.3) can consequently be written in terms of an

x-integration as

L= dx 1

V

£=[nvD2_ J Tr P + V*Q') - qn( A-IA' + ( - . (4.6)

4.2.2 Expansions of v, n , and P

The terms that involve vD J, ', A', E', and B are easily expanded

by the use of (4.2), (4.4), and (4.5), and the Taylor series expansions

at x. However, expansion of the terms, Tr P /2 + V *Q , in (4.6)

introduces considerable difficulty. We shall confine ourselves to the

case of scalar pressure and adiabatic processes satisfying the equation

of state

p n ijP

for each particle species, with Y being the adiabatic index.
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Expansion of zD: Taking the time derivative of the first expression

of (4.2), we obtain

vD= v + ; (4.8)

where % denotes dj[x(,o,t),t]/dt. Then the nonlocal expansion of

vD is seen to be,

vD =D+ v+ v2+ v3+ ... ,

vv = = O (4.9)-1 : , 42 -3

If we define the local expansion of v'(x,t) as

Z (x t) = + VL + L2 L3+ ... , (4.10)

it can be shown by Taylor series expansion of v'(x',t) at x that

i

v. = .i + . (" V)i v (4.11)
j=l

As a result, we have

VL1 = - , vL2 = -" V + - -:VV,- + " V* . V . (4.12)

Expansion of n': Combination of (4.4) and (4.5) gives the particle

conservation law along as (Newcomb, 1962)

nJ = n (4.13)
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With the Jacobian, J, expressed in -its exact expansion,

J I + V + IvV+11 \ 
I

(VJ - + V- V 17j Vj: + V (4.14)

the nonlocal expansion of n* becomes

n - n + nl + n2 + n3 +...

n = -nV n 2- + V:Vn31 -2

By use of a relation between ni and nLi analogous to (4.11), the local

expansion of n then takes the form

n (x t) = n + nL + nL2 + nL3 + ...

nL1= -V * (n) , nL 2 = - :( ~ ) .(4.1)

The results of (4.16) agree with Sturrock's generalization of the

Lagrange expansion in the form (Sturrock, 1960b)

nL. i! k " k "' n)(k,j = 1,2,3; i = 1,2, ... ) , (4.17)

while nLl and nL2 have been derived by Newcomb (1962).
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Expansion of P': The nonlocal expansion of P' can be obtained by

substituting (4.1) and the second expression of (4.14) in the first

expression of (4.7),

P = P+ P1+ P2 + P3 +...

P = -yp(v . ) , P 1 P [ ( * V2'2 2

2
P,- Y (V2 )3+ 7F)(v e + Q7

By use of a relation between P. and PLi analogous to (4.11), we obtain

from (4.18),

P(x,t) P+ P + PL L2 +

PL1 = -yPV -. VP

PL2 = [2 (v.) 2 + :V .

+ k [- + y(v • , + VP+ :VVP (4.19)

Because ZvL3, nL3 , and PL3 will not be needed to derive the second

order expansions of the perturbed force law (3.46) and Maxwell's equations

(3.26), these local expansions of vd, n', and P were not given

in (4.12), (4.16), and (4.19). The nonlocal expansions, v 3, n3 , and

P3, however, are included in (4.9), (4.1), and (4.18) because they will

be used in deriving L3.
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4.2.3 Expansion of the Lagrangian

The expressions for the £. of (4.1) can be obtained by substitution

of (4.8), (4.14), (4.18), and the second expression of (4.7) in (4.6).

Thenfor the unperturbed Lagrangian density, we have

m 2 p e n0.AD E2  B2
= nvD - qn( -A) + - - (4.20)

y-l

where the term P/(Y-I) is a result of generalization from P - 1

by replacing 5/3 by Y (Newcomb, 1962). For the perturbation Lagrangian

densities, we have after using integration by parts,

nD+ PV*.-qn(pl+ Vq(P- "A)+ qnvD 1(+ *VA) + E BlB1 ,

£2 =  n 2 [(-1)(V)2 + VV:V - qn(~. + I VV

S 2  2

2 + 2 2

£3 -C [pl) (-v.) 3 + y! (.V)(V3:V0 ) + 

+ qn * :VVA1 + 1~ :VVA) + .VA1 + 1 V A):V . (4.21)

The Euler-Lagrange equations of L, from I of (4.20), with respect to

x, A, and cp, are the unperturbed force law and Maxwell's equations,
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mnvD + VP- qn(E + v X B) = 0

aE
VX B- O B qnv = , EE- qn 0 . (4.22)

Use of these shows that L 1, from £1 of (4.21), is identically zero.

The Euler-Lagrange equations of L2, from £2 of (4.21), form the

system of linear equations in , Al, and cpl, describing wave propagation.

We shall not derive them at this point, but consider the Euler-Lagrange

equations resulting from variation of L2 + L3, describing nonlinear

wave-wave interactions.

Variation in P1: Taking the variation of L2 + L3 with respect

to (1 yields

e0V'E 1 + q (n) - VV(:(n = 0 (4.23)

Local expansion of the second expression of (3.26), and use of the last

expression of (4.22), gives

e0 V E1 - q(nL1 + nL2 )= 0 . (4.24)

By use of (4.16), it is easy to demonstrate that (4.23) and (4.24) are

identical.

Variation in AI: Taking the variation of L2 + L with respect

to A yields

o '7 - oa - q i- v(n ) - o(n )+ v:(n =0 . (4.25)
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Local expansion of the first expression of (3.26), and use of the second

expression of (4.24), gives

OVX -1  q n + + nv + vL + nL2D = 0. (4.26)40 -1 0aLt nLl,D nI nL Ll 1,"

Use of (4.12) and (4.16) shows that (4.29) and (4.26) are identical.

Variation in $: Taking the variation of L2 + L3  with respect to

Syields

mn - (Y-1)VP V *(- *VP+ yP Y-1))(V- ) V(V*(+ V(V : V )+ V *V(V*.)

+ -1 VP[(Y-l)(V*)2 + : (Y-1)(V.)V.7P + VP

- qn 1 + .VE+ v X'B1 - B XV + B
1 ~D -1 ~ +D

- qn VE+ + :VVE v :V)X - B1 +.VB X =0 . (4.27)

The local expansion of (3.46) at x, with V *P replaced by VP,

does not agree with (4.27). The discrepancy occurs because the former

is inconsistent with the nonlocal expansion of L' of (4.3). The

appropriate expansion of the force law must be constrained by the particle

conservation law, i.e. by comparing the first expression of (4.22) with

the force law

dv'
J mn Z t+ V'P - qn (E'+ v X B = , (4.28)[ dt
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which describes the same cell of particles in its perturbed motion.

The nonlocal expansion of (4.28) is

+ 1 L

mn ( + P - ( ) 2  (VJ:VJ)

+ + v + 1 ( 25 -1 (VE:V ) PL1+ VVP+ VPL 2 + S*VVL E

- qn ( 1+ + 1E'VEI+ e:VVE - qn XB+ VDXB 1 - VB Xv

+ x -~ x -*V 1 :vBx~) , (4.29)

where (4.8), (4.14), (4.15), and the first expression of (4.22) have been

used. Introduction of (4.19) establishes that (4.28) and (4.29) are

identical. A similar force law expansion is examined in Appendix B.

4.3 Nonlinear Wave Coupling Coefficients

We shall now use L2 + L3  to obtain the coupling coefficients for

waves in a homogeneous, stationary, two-component magnetoplasma. The

general expression will be derived by the averaged-Lagrangian technique.

4.3.1 Averaged Lagrangian

It is convenient to introduce the normalized quantities

n.m. Ps /2 eB1 1 s

nm s 2 Ds c m
ee e \nsms c pe e

pe e e
- c -s 2 1 mc 1

mc ee

D c pe
SP x T = t , (4.30)

-- - c pepe pe
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where the subscript s denotes electrons or ions; o is the electron
pe

plasma frequency, c is the free space speed of light, and ADs is the

Debye length normalized against c/Ope. Then £2 and X3 from (4.21)

may be written as

j j 2  _. 2 1 . ( x X f) + V1

1 2 e 2 2 1)
1 2  Ve V )e2( e - 2 + e -m e Zc^e

1 IV + *12  I Ijx al2

2r i ei (2-Y 3] i• 1

+ Ve e - ' )( : O - (2-Ye)( -' a e:VV , (4.31)

£2 V2

where the values of "2 and £3 have been normalized against nemec ;

the pressure terms have been reduced from their counterparts in (4.21)

by integration by parts, and we have assumed the background charge to be

neutral (qini = ene ) qe = -e) and the dc VVA and Vcp to be zero.

The averaged forms of £2 and X3 may be obtained using the Fourier

transformation

eXi1T) f -J12 C (K,0)exp i(OT- K X) (4.32)

where C(K,0), K, and 0 can vary slowly with the normalized space

and time coordinates, X and T, due to weak nonlinear wave-wave inter-

action. If the scales of these slow variations, AX and AT, satisfy
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then we have (Schiff, 1970)

fdX f dT exp i (0-0')T- (K-K X (21) 6(-0') 8(K-K') (4.34)
AX AT

The action integral of (4.31),

Ii = dXdT Xi  (i = 2,3) , (4.35)

can be rewritten by use of (4.32) and (4.34). For 12, we have

= d A2 )  (2) i(2) e(2) F(2)1 2 *LKA, AK K, + A K + A

= a 2 i 2  vi I, I + i i i x )+ i(K* )

Ae(2) =02 2 e 2 1!. 2
2 l 2 -*X_e Oc) e)

A2 = -K- Q2 K2 (4.36)

where the Coulomb gauge (V.a = 0), and the symmetry, C*(-K,-)=~ (K,Q),
have been assumed. The latter reflects the requirement that (X,T)

be rea] and has also been applied to ki, 4, and G.

To reduce 13 to its simplest form, it will be necessary to use the

properties of linear waves, which can be obtained from 12. We shall

therefore establish them before proceeding further.
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4.3.2 Linear Waves

By taking the variations of 12 with respect to )s(K ) and

a (KO), we obtain the following linear equations

S - yVi2 K(K )] - ia+ iO +i x = X 0

02 - V 2 K(K* ) + ina - iKO - iC X 0 = O2e 2

K2 + ~(K - a) - ic(; -e ) = 0 (4.37)

By introducing the normalized electric field,

eE
e = i(K - Qa) = eE (1W mc

pe e

we can obtain from (4.37)

K 2 e -s

Here, the polarization tensor, M , is defined in a Cartesian coordinate

system with 2 in the positive z-direction. Its elements are given by

xx 1 2 s s~52(K + K2)] , s 12 - s2(K2+ K2)]
s  1 2 2 2

xxM A - yV(K + K y --

zz s s y - s

iK 2
s s 1 2 s

M =M V KK- s
xy yx As  VsK x y 5

y V2 K iK C y V2K iK

zy =Ms s s z K yM ss (4.40)
xz zy x y y As
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where * denotes the complex conjugate, and e, i., and As are defined

as

s = i c Y V22s K2 2 sVsK2)z (4.41)

Using (4.39) in (4.37) yields the familiar results (Allis, Buchsbaum,

and Bers, 1963)

D*8 = 0 D = )1 - I + K

Mi K
L-e T a = ' (4.42)

where K is the plasma equivalent permittivity tensor. Nontrivial solutions

for (4.42) exist when K and Q satisfy the dispersion relation,

det D = 0 (4.43)

For these values of Q(K), the electric field polarization vector is

e i(D D -DxyDyz) (D D -D D) (D D -D D ) (4.)Iyyy xz Z , (xyy x - D (4.44)

We shall postpone discussion of the various linear waves described by (4.43)

until Section 5, where Langmuir, ion-acoustic, and whistler waves will be

treated in applications of the results to be derived in this section.

4.3.3 Wave Coupling Coefficients

We now return to the derivation of wave coupling coefficients from

£3* We first separate &(KE) into its component wave amplitudes and

unit polarizations,
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Jcs ne Y ((X, 
T)4.4r)

U

where K~(XT) has slow X- and T-dependences because of nonlinear

wave interaction. Use of (4.4--), (4.32), (4.34), (4.35), and (4.39),

in (4.31) then gives

I I dKdK'dK" '" 8 A K.KI
3 1 - ~ KKK

S

A =T As K A s K KK
AK K K s T I A ( ]

As ,K" V Ks  - s e" Ms e e

. + )(Ke." (4.46)

i K K e K*M *e (4.47)where T., Te, e , and 8" are given by

'r. = I/0" , = -i , e U =e , 8= 8U, (4.47)
1 e - K K "

In I 3 the integration, over , K , and K" is restricted by the

S
synchronism conditions,

K + K' + K" = 0 C(K) + 0'(K') + n"(K") = 0 (4.48)
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The summation in AKK K" is assumed to cover all permutations of its

following terms with respect to K, K , and K//. By use of the frequency

synchronism condition of (4.48), we find that the second term of

A (K,K',K"), when summed over all permutations, will make zero contribu-

tion to A KK K

It is noted that AKK K" is composed of two types of nonlinear inter-

action energies. One is associated with the thermal motion of the charged

particles, represented by A (K,K ,K"). The other, As(K,K ,K")

r 4/ s A/ -s '\ /A= "" e* -e .KM e 2 , is the field-particle interaction contri-

bution associated with the current, charge density, and electric and

magnetic fields. It consists of those terms in £3 of (4.31) that are

multiplied, by the unperturbed charge density, q n.s s

The quantity (AKK K + c.c.), with c.c. representing the complex

conjugate, can be interpreted as the rate of energy transfer to the (-K)

wave due to nonlinear interaction between the K' and K" waves of unit

amplitude in the normalized electric field (Galloway, 1972). Because of

this energy transfer, the energy of a single wave is no longer conserved,

as in the linear case. Insteadwe have (Galloway and Kim, 1971)

K + X-KU dK dK AKK (4.49)
S

where S signifies that the synchronism conditions of (4.48) are satisfied.

The wave energy and energy flux densities, 3K and YK' can be obtained

by applying the Legendre transformation to £2, but retaining the original

dependent variables s, 4, and 0 , before applying the averaging process.

They are given by,
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H2 dK , F 2 = dKK

U U

uK 2 U K 2)

ae ivle e 2+ight-h *e+ M *I s+aMn* syee rc

ye* K-K*e e
U i 2 i i(4. e 0)

4 V. K*M *e M  e +- V K e e +(2a i 2 e - 2C?

with * denoting the complex conjugate. When only three discrete waves

are involved, the right-hand side of (4.49) reduces to a summation symmetric

in K, K', and K". We have,by substitution of (4.50),

+ K F H_ + le12
T* -\X 12= I/j aa"

\6T + K = e- AKK K

The first two equations are the Manley-Rowe relations expressing the

conservation of wave action, Ki 2 , in three-wave interaction

(Louisell, 1960). ,

The coupled mode equation can be obtained from (4.51) by cancelling

P , 8 , and 8 in (4.51),
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P P-p pX p psi s i*

(a + -a )v = Cs e Us T s s psi p

i ax 1 psi s p ' (4.2)

where U, V, and W denote the waves, and the following substitutions have

been assumed,

UVW U VW U U'
C psi KK A K KK K -K ' p

K = -K K =KA K.KU (4 3)-p s -K l-= K

with the last two relations following from (4.-0). The subscripts p, s,

and i denote the pump, signal, and idler waves, respectively. This

nomenclature is commonly used in describing parametric amplifiers, where

a large amplitude pump wave, e, is applied to amplify the signal and

idler waves (Louisell, 1960).

4.4 Parametric Wave Amplification

In Section 4.3 we have derived the general coupled mode equations for

nonlinear three-wave interaction under three important assumptions: first,

that the waves are undamped; second, that the background plasma is homo-

geneous, and third, that there are no additional nonlinear wave processes,

such as wave-particle interaction. We shall now consider spatial solutions

to the coupled mode equations,and assess the effects of relaxing some of
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these assumptions. In particular, some results with damping taken into

account will be considered. They will be of use in Section 5 for com-

paring theoretical predictions with experiments on parametric amplification.

4.4.1 Parametric Amplification Without Wave Damping

The solutions of the coupled mode equations in (4.52) are well-known,

and will be briefly discussed in this subsection. We proceed with the

assumption of a large pump wave amplitude.

lepl >> 8le, leiI: In this case, 8p can be considered as a constant

because the right-hand side of the first expression of (4.52) is now

negligible. The remaining two equations become linear in Es and .

Their solutions are then subject to the instability criteria well-known

in the linear wave theory concerning absolute (temporal) and convective

(spatial) growth (Sturrock, 1958b; Briggs, 1964; Derfler, 1967). This type

of analysis has been extended by Harker and Crawforl (196 9a) and

Van Hoven (1971). In particular, they have shown that, (a) if s~ 1. > 0

and si > 0, Es and ti are convectively unstable with both

temporal and spatial growth possible, (b) if sj i > 0 and 'Us 8i < 0,

they become absolutely unstable, and evanescent in space but amplified

in time, (c) if Osi < 0 and s1 i > O, they are evanescent in time

but amplified in space, and (d) if js i < 0 and 's i < 0, they vary

like beat waves and no persistent amplification in space or time is

possible. Cases (a) and (c), in which the signal and idler wave group

velocities are in the same direction (l s i > 0), are usually termed

co-flow or forward scatter, while Cases (b) and (d), in which the signal
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and idler wave group velocities have opposite directions (us i < 0),

are usually termed contra-flow or back scatter. The distinction

between the two types of parametric amplification is illustrated in

figures 4.2(a) and 4.2(b).

The temporal (assuming space-independence) and spatial (assuming

time-independence) parametric amplification rates, P 0  and KO0

respectively, are given by (Louisell, 1960),

O = KO( si )1/ 2  Cpsi pl * )= , !(4.54)

=0s i

These expressions can be obtained from the last two relations of (4.52)

by assuming that es and Pi vary as exp(OT) or exp(K0 Z) in a one-

dimensional approximation in the z-direction. Since imaginary O0 or

K0 amounts to a small nonlinear frequency or wavenumber shift, respectively,

for the signal and idler, the results of (4.54) are seen to be consistent

with those by Harker (1969) and Van Hoven (1971).

If we assume that the initial (or boundary) value of 8i is zero,

(4.54) breaks down because 8i  can no longer be an exponential function

in T (or Z). We then find from the right-hand side of the second expression

of (4.52) that the initial slope of es in T (or Z) is zero. Also,

from the last expression of (4.52), the starting behavior of 8. is seen
1

to be rOiZ (or K OiT), with

c .* (0)e (0)
rO0 i = K0 i psi s p (

1

When le( becomes comparable to esl due to this linear growth, the

exponential growth of (4.54) is then applicable. The spatial behavior
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(Kp,,ap)

(Ki, i( , s i
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/ (KS,1S)
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o (b) K

Figure 4.2 The distinction between (a) the co-flow (forward scatter)

and (b) the contra-flow (back scatter) cases of parametric

amplification. The solid lines indicate the dispersion

curves near the (K,Q) of the pump, signal and idler waves.

In the co-flow case, the group velocities (1 = d/dK) of

the signal and idler have the same sign, while in the

contra-flow case, their group velocities have opposite signs.
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of 8 and 8. in each of the above mentioned four cases were presented
s 1

in a summary paper by Barnes (1964).

I - esi - . : In the case of parametric growth in and

8i, the results of (4.54) and (4.55) can be considered accurate only near

the boundary where, or soon after the initial time when, the pump wave is

being injected. These results break down as soon as 8 and 8eiI

become comparable to lepl. In this case, the temporal solutions to

(4.52) must be put in terms of elliptic integrals involving the wave

actions leIpl2 %IE 12 , and 5.. 12 . The solutions of these wave

actions, when all the 5's have the same sign, are illustrated in

figure 4.3 (see for example, Sagdeev and Galeev, 1969). Several features

of this figure should be noted: first, that lepl can no longer be con-

sidered as a constant; second, that the interaction process is reversible

and has a nonlinear period Tn, which can be shown to be roughly propor-

tional to the inverse of the maximum value of IFpl, and third, that the

Manley-Rowe type of wave action conservation laws, derivable from (4.51),

p lep2 Fs 2 = constant isls 2 + .il ei 2 = constant , (4.56)

are satisfied. Finally, it should be noted that if all the 1's

have the same sign, the spatial solutions in this case are similar to the

temporal solutions shown in figure 4.3. To complete the analogy, it is

only necessary to replace T and the I 812 's in figure 4.3 by Z

and the corresponding 5 ~182's, respectively. Also, (4.56) becomes,

Jp p Ip 2 - s Ies 12 = constant s s 2 + J 11 ie, 12 = constant , (4.57)

which is the Manley-Rowe type of power-balance formula (Penfield, 1960).
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i9i\orr J El

Tn (or Zn ) T (or Z)

Figure 4.3 The solutions to (4.-2) when IFpl, les, and ei are

comparable in magnitude are in terms of the wave action,

j 12, for temporal behavior,and wave power transfer,

jb18e1 2, for spatial behavior. Tn (or Zn) is the

interaction periodicity time (or spatial length) of

wave interaction.
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A situation in which the wave amplitudes increase to infinity in a

finite time period occurs when 3 < 0 and s, . > 0. We then have
p s I

from (4.52),

de de de.

p P e. s =C e. . , = C ee(4.58)p dT s I s dT I p 1 dT sp

where C =C psi. Now 8p, s) , and 6. can be made real in value by

choosing n/2 as the phase angle difference between the pump and the

signal and idler waves in (4.r2) (Davidson, 1972). From (4.r8), we see

that, whenever p , 8&, and ei  simultaneously have the same sign, the

wave amplitudes grow without bound. As illustrated in figure 4.4, we

have for the special case 8 = s = _ (Davidson, 1972),
p s 1

ep(T) = p() p T] (4.r9)p p p

which becomes infinite in a time period Tex p = 1 /C e (0). This is the

simplest example of the so-called explosive instability (see for example,

Coppi, Rosenbluth. and Sudan, 1969).

This infinitely large amplitude cannot occur in practice, however,

because of the limiting effects of linear wave dampingand other nonlinear

wave processes, which are omitted in the foregoing model of a wave-

triplet. On the other hand, the spatial solutions to (4.52), when

5 p < 0, and Is 1i i > O, have a similar form to the temporal

solutions shown in figure 4.4, with the explosive instability length

being Zexp = 131 p/C ep (0). In the next subsection, it will be shown

that the inclusion of weak wave damping will drastically change the

behavior of p, , and ,i from that briefly indicated above.
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I~pI

I-

ST (or Zp) T(or Z)
Texp(Or Zexp)

Figure 4.4 The behavior of J in the explosive instability of

three-wave interaction, occurring when jp is different

in sign from Is and 9i for their temporal solutions,

or 9j lp is different in sign from jss and '9. .

for their spatial solutions.
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4.4.2 Wave Damping

The effects of weak linear wave damping can be included phenomenolo-

gically in the coupled mode equations (4.52) (Sj8lund and Stenflo, 1967),

+ + e = -c e.+p axp psi s i

+ s *- + F = C 8.8
s (T s SX s s psi g p

i\aT i aX i i -psi sp

where the rp,s,i represent the normalized damping rates of the pump,

signal, and idler. Due to the presence of rp . , le p must be larger

than some threshold before es and P. can be amplified. This threshold

field, eth for amplification can be obtained by setting /T = = 0= /aX in

the last two expressions of (4.60). We then obtain

th (4.61)ICpsiI

after cancelling es and .. When the pump field is not far above the

threshold, we may obtain the initial parametric amplification rate for

waves propagating parallel to Z, in a fashion similar to that used in

obtaining (4.54) (Louisell, 1960), as

2 2
2 KO th

K+ (4.62)
s i+

where Kg is given by (4.54); ps, i" and Kth are defined by
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s i = Ko , (4.63)
s i = e

p th

2  2
and we have assumed (s + i ) >> 4( K th

For the case of a large amplitude undamped pump wave, the spatial

solutions for linearly damped signal and idler waves have already been

presented in the context of nonlinear optics (Bloembergen, 1965; Bobroff,

1965). The stability analysis, in line with the approach by Harker and

Crawford (1969a) and Van Hoven (1971), has been extended to this case by

Bers, Chambers, and Hawryluk (1973). Here, we wish to extend the analysis

to account for a damped pump wave. A similar problem has been studied

by Ohnuma and Hatta (1970), and by Porkolab and Chang (1970).

By making the phase of t different from those of s and Pi by

n/2 in (4.60), we have for the one-dimensional case (Davidson, 1972),

s sdZ +  sI cs (4.64)
U ( ) = C &i p i i i i = C s ( .

where C = ICpsil; ep, es, and ei are real in value, and we assume an

exponentially decaying, large amplitude pump wave

?P= p(0)exp(-t Z) (le >> JjeI) (4.6))

Case 1. p i 4s = pi = p.: The simplified case where 4p = ks= i=

has been treated by Ohnuma and Hatta (1970), and a further simplifi'cation

to second harmonic generation by a large amplitude ion-acoustic wave has

been studied by them and by Litzenberger, et al. (1972). For purposes

of comparison between theory and experiment in Section 5.2.3, we shall
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consider solutions for parametric amplification when 4. p p.s =  p = 4.

We then have as solutions of (4.64) , for the case of co-flow (figure 4.2a)

es = [s() cosh M + i(0)i1-s s sinh M exp(-pZ)

=i 8i(0) cosh M + es(0)(si ) sinh M exp(-pZ)

F CS (0) e(o)
M(Z)=ML- exp(-Z) , MO) 1/2 (4.66)

p (U11ssi .i) 1/2 th p

where Ps(0) and e.(0) are the values of es and e at Z = 0, and

the second expression for M0  is obtained by using (4.61).

By evaluating ds/dZ and dSi/dZ at Z = 0, we find that es

and 8i grow in the vicinity of Z = 0 according to (4.61) and (4.62).

For Z such that p Z >> i, PS and e both decay by linear damping.

This behavior is illustrated in figure 4.5 and is drastically different

from that shown in figure 4.3 where damping was not included. In the simpler

theoretical model used by Ohnuma and Hatta (1970), in which 4p = p., the

following assumptions were made,

M(Z) << 1 , es(0) > 1 j- , (4.67)() M0  (i/s

where the second condition is obtained by making de./dZ > 0 at Z = 0
1

according to the second expression of (4.66). It then follows that F.1

has its maximum value at ZO = in2/p 0 .7/p, a result obtained

without assuming 4p = p.
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0 Zo Z

Figure 4.5 The schematic behavior of Ps and i according

to (4.66), where wave damping of 8p, 8s, and 8i

has been included. When p = p, and under the

condition (4.67), the peak location Z0  of 8i

becomes independent of p (0).



Case 2. p / p. p. : The solutions for s and e. must now be

expressed in terms of Bessel functions (Porkolab and Chang, 1970). We

shall consider only the case where p > 0 (Ip > 0), .s < 0 (Us < 0),

and pi > 0 ('Ui > 0), i.e. the contra-flow or back scatter case (Barnes,

1964; Bloembergen, 1965), as illustrated in figure 4.2b, relevant to

examples in Sections -.3.2, 5.4.3, and 5.5.4. Under these conditions the

solutions of (4.64) for 8s and 6i  can be written as
5. 1

= [Cl Jv (X) + C p N,,1 (X) exp[-(4p+ +p +i z1

s = [Csl Jv(X) C N(X) exp[-( p + (ps i(4.68)

where the quantities X, v, IMOI Cil,2 and Csl,2 are defined by

X = M01 exp-pZ v= - - - p5

IM01= C (0) (0s 1s -/2
p (ru I .)th p

Cil = I2 NIv-1(MO s1 2 (0) - N( I0 ) (0)

Ci2 [v 0/ i) - s V, 2 -1 (vlIMO i s(O

C 1 IMO s 1/2

Cs1  TM I [N v-1 (IMO (0) -) I N 11 M I (0

T IMO j 111(I j s 1l/2 ( (I o 1
Cs2 = 2 [ is sJ v\O' i(0 - Jv-l\ s0 ,0 (4.69)
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where J (X) and N (X) are Bessel functions of the first and second

kinds (Abramovitz and Stegun, 1965).

Simplifications of (4.68) are possible under various conditions of

interest for Section 5:

X << : In this case, 8i  and 8s  reduce to

si i

X exp [ -p + IsI + ZZ 
(4.71i

V X: We now have for /. and the expressions

+ [ Xs(O)X2i - + (o) 1 )2  exp ( )

s e s(o) e(v-01)X M

X exp [(4 p + s + (4.70)

where X i and X are defined by
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where X2i and X2s are defined by

IMQO ss1/2  MO s 1s .1/2
2i ' 2s 2v '. (4.73)

and e0 has been written for exp(l) = 2.718...

X > v >> 1: In this approximation, 8. and s reduce to
1 s

L s ui i I $ L s if 2
' s&(0)cos M + e.(o lA \1

(/2+

es [Pss(0)cos M + Pi(0( 1 ) sin M exp[- s + i (4"74)

We note that,

M(Z) = 1M [1 - exp(-pZ)] j 0  pZ , (4I71)

where the second expression for M(Z) is appropriate when p Z << 1. In

(4.70), (4.72), and (4.75), the quantity IMo0  has been defined in (4.69).

It will be seen in Section 5 that the behavior of e and e. accordingS 1

to (4.70)-(4.75) is drastically different from that indicated in

Section 4.4.1 where linear damping is neglected.

Case 3. Noncollinear Propagation: So far we have assumed that

the group velocities are collinear. In preparation for Section 5.5.4,

we now consider the case when 11 '1 , and '1 are no longer collinear.

The coupled mode equations (4.64) become
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s x C e.ep

a 1 + r) es C Ip(.76)
i xx X iz i Z 1 s p

where sx' 1sz ',ix, and 1iz are defined by

X = C sinV s ' Oz 1 cosY It. = 'U. sin, 'U . z=UicosY.,(4.77)

with Y and Y. being the angles of 't and 1i with respect to the
s 1 "-'5

positive Z direction. Substituting

EP(X,Z) = es(Z) exp(-sxX ) , &(X,Z) = .i(Z) exp(-4ix) ,

s s sx 1 ix

SX - sinY 7 s =  U. cosY ' COS . sinTi iz- . cosYi
S S 1 1

(4.78)

(4.76) can be reduced to

S~ s - + sz) e(z) = c .(z) (z) exp[(s- )

d - i) e.(z) C (z) e exp[( - p. (4.79)
S --iz dZ 1 s p .ix sx

It will be seen that, along a path with X constant, (4.79) is equivalent

to (4.64), but with different wave coupling coefficients. Along an

appropriately chosen Z-axis, where X = O, e.g. the central plane of a

plasma slab, the form of (4.79) becomes identical to that of (4.64). The

solutions, (4..68)-(4.75), become the solutions of (4.79) when Us i' 4s'

and ki are replaced by '1sz 1iz' sz' iz, respectively.
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4.4.3 Effects of Other Nonlinear Processes and Plasma Inhomogeneity

In addition to linear wave damping, other nonlinear wave processes

and plasma background inhomogeneity may also significantly alter the

behavior of the interacting wave-triplet. Here we shall only briefly

discuss the conditions under which the solutions of 8 and L. givens 1

in Section 4.4.2 are still acceptable in practice.

Other Nonlinear Processes: The competing nonlinear wave processes

likely to occur in the presence of a large amplitude pump wave are

primarily in the form of modifications of the background plasma. While

causing them, the pump wave may have a significantly different behavior

from the exponential decay assumed in (4.65), thus rendering the solutions

for 8 and 8. given in Section 4.4.2 inaccurate.
s 1

(i) Particles trapped by an electrostatic pump wave: In a collisionless

plasma.and assuming K 2V 2<< 1, this process is important under thee

condition (see for example, Davidson, 1972),

ek E (Klp) 2  (4.80)

Q >> >> rL  2 = K , (4.80)
p e

where CB is the electron bounce frequency when trapped in a trough of

the pump wave, and FL  is the normalized linear Landau damping rate,

L () 1 exp 2 - 3 (4.81)
L 8 (KVe) 3 " 2K2V e2 2

It is well known that, under the condition (4.80), the electrostatic wave

decays like exp(-FLT) only for T E 1/B, but executes modulational

oscillation when T > 1/D. This behavior is illustrated in figure 4.6.
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oC Exp (-rLT)

0 2rr 4,r 6r

,BT

Figure 4.6 The behavior of an electrostatic pump wave amplitude under

the influence of trapped electrons (-) in a collisionless

plasma under condition (4.80). In the absence of electron-

trapping, the wave decays according to linear Landau

damping as exp(-LT) (----).
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The results of Section 4.4.2 are therefore appropriate only for T 1 1/1B,

or for Z < 1/S1p when considering spatial evolution.

The first condition in (4.80) is necessary to restrict the size of

lepl so that the electron density perturbation is much smaller than the

quiescent density (Davidson, 1972), and is consistent with the assumption

of weak perturbation used in Section 4.2 in approximating the Lagrangian.

The second condition in (4.80) is required to allow the trapped electrons

to make many bounces in a wave trough before they become untrapped due to
wave damnin. Therefore when +he c1o onl d -, is much larger

. ... .- - I D ILUU11 UalllrL c

than rL rc should replace PL in (4.80). Following the same reasoning,

ec should be replaced by the total measured pump wave damping rate p ,

which may be a sum of rc  and the nonlinear damping rate rNL that

accounts for all the nonlinear effects on the pump wave. We then have

from (4.80),

P 1/2(4.82)

as the condition under which the trapped particle effects on an electro-

static pump wave are negligible.

(ii) Plasma heating: Substantial background modification in the

form of plasma heating by an incident wave can occur in a collisional

plasma due to collisional randomization of the ordered perturbation in

electron motion. It has been shown that the electron temperature, Te

increases from its quiescent value, T , roughly according to

(Ginzburg, 1970),

S1+ ( II 'T v , (4.83)
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2 2 2
when a >> v, pe with ve being the electron-ion and electron-neutral

energy transfer collisional frequency. When l 2 >> ~, it is seen

that the corresponding temperature increase can be substantial, thus

changing the wave coupling coefficients and linear wave properties.

Thus, in the presence of a large amplitude pump wave, the electron

temperature should be determined from (4.83) before using the results of

Section 4.4.2.

(iii) Density Modifications: Particle trapping and plasma heating

deal with the modification of the plasma background in velocity space.

Modifications in configuration space can occur when the large amplitude

wave is inhomogeneous in amplitude, as is the case in (4.69). This results

2
in an equivalent potential energy, N (normalized to m c ), for each

Ne

charged particle (Ginzburg, 1970),

le I e (0)12
- 2 - 2 exp(-24pZ) . (4.84)

This nonlinear effect becomes important when N is comparable with the

2
average electron thermal energy, V 2/2. So the condition under which

e

the background plasma density is not significantly altered by an inhomo-

geneous large amplitude pump wave is then,

.l (2  2 2
p e (4.85)

over the plasma region where aZ .1. The effects of background

inhomogeneity on the three-wave interaction process will be briefly

discussed below.
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Plasma Inhomogeneity: The size of the plasma region, ALO, in which

nonlinear wave interaction occurs, may be limited either by boundaries

in the case of a uniform plasma, or by satisfying the synchronism condi-

tions (4.48) in the case of a slightly inhomogeneous plasma.

(i) Bounded homogeneous plasma: In this casewe require

KAL 0 >> 1 , KAO > 1 , (4.86)

to see significant nonlinear wave amplification within ALO . If there

is a departure AK (= -K'-K/) from synchronism, then the parametric

growth will be substantially unaffected only if

AK * AL < . (4.87)

This conclusion may be reached by considering the exact expression for

the integral in (4.34) (Schiff, 1970; Phelps, Van Hoven, and Rynn, 1973)

AK AK *ALOL dZ exp(iAK * Z) = 2 sin AK Lo

-L AK s a (4.88)

which has the significant value of roughly unity only when (4.87) is

satisfied. Note here that we have neglected the reflection of waves from

the boundaries.

(ii) Weakly inhomogeneous background: In this case, the quantity

AK is a function of AL, where AL is the distance from the point of

perfect synchronism. Then (4.87) can be used to determine the width,

AL0, of the region over which synchronism is sufficiently well satisfied

for parametric amplification to occur. Assuming linear dependence of AK

on AL, we then have from (4.87)
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ALO < 1 ,/ AK = aL (4.89)

which agrees With a result by Harker and Crawford (1970).

4.5 Discussion

The purpose of this section has been to apply the macroscopic-

Lagrangian obtained in Section 3 to the description of parametric wave

amplification phenomena in a homogeneous plasma. In Section 4.2, the

Lagrangian of .(3.22) was expanded in terms of the perturbations, ~ A,

and pl, in plasma cell position x and the vector and scalar potentials

A and cp. In Section 4.3, the averaged Lagrangian) technique was applied

to obtain the energy densities and energy flux densities of the linear

waves,and the nonlinear wave coupling coefficients. We specialized in

Section 4.4 the analysis of the three-wave coupled mode equations to

parametric amplification, and demonstrated how to solve them in the presence

of linear wave damping. The results will be used in Section 5 to make

comparisons between theory and experiment.
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r- THREE-WAVE INTERACTIONS: APPLICATIONS

5.1 Introduction

Nonlinear wave-wave interaction represents the lowest order correc-

tion to linear plasma wave theory. It must be described and understood,

together with the phenomena of nonlinear wave-particle interactions, which

have been ignored in this thesis, before effective progress can be made

towards understanding such significant plasma problems as turbulence and

anomalous transport (Kadomtsev, 1961). In view of its importance, one

would expect to find a variety of theoretical predictions for interactions

between various types of plasma waves, and a corresponding series of

experimental investigations designed to test the validity of the theory.

This desirable stage has not been reached, however. Although there

have been many analyses of wave-wave interactions, there have been few

experiments carried out to test them rigorously. A representative sample

of the literature is given in Table 5.1. The list is not intended to be

exhaustive, but illustrative. Most of the nonlinear wave coupling

coefficients have been derived by the conventional iterative method. This

approach is conceptually simple, but generally involves greater algebraic

complexity than the Lagrangian method.

Although all of those results listed could be rederived by the

averaged Lagrangian methodby use of an appropriate Lagrangian density,

only a small number of the analyses were carried out by this method.

These may be categorized by the plasma models used.

Cold Plasma: Using the cold plasma Lagrangian, Galloway and Crawford

(1970) have obtained the coupling coefficients for transverse waves

propagating at arbitrary angles to the static magnetic field. As men-

tioned in Section 4.1, a similar study has been presented by Boyd and
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Table 5.1 Some derivations of wave coupling coefficients using (a) the

averaged Lagrangian method and (b) the iterative method, with

(c) related experimental work. The abbreviations used below

represent, C: cold plasma, M: macroscopic warm plasma, and

m: microscopic warm plasma. With respect to the static

magnetic field, we have, 11: parallel propagation, -- : quasi-

parallel propagation, 1: perpendicular propagation, and

X: oblique propagation. With respect to the directions of the

phase velocities, we have, O = 0: collinear waves,and 8 ; 0:

noncollinear waves.

Interacting Waves, References; Theoretical Assumptions

Three ion-acoustic (b) Litzenberger and Bekefi (1969); M, = 0
waves (b)(c) Ohnuma and Hatta (1970); M, 8 = 0

i(b)(c) Litzenberger, Mix, and Bekefi (1972);

M, = 0

Two electron plasma (a) Suramlishvili (1964); m, a 0
waves and one ion- (a) Kim (1972); M, 8 = 0
acoustic wave

(b) Oraevskii and Sagdeev (1963); M, G ' 0

(b) Lee and Su (1966); M, 8 0

(b) Gratzl (1971); m, 0

Three electron plasma (a) Galloway and Kim (1971); m, 8 = 0
waves (a) Kim (1972); m-, t 0

Two whistlers and one (b) Forslund, Kindel, and Lindman (1972);

ion-acoustic wave M and m, I

(b) Porkolab (1972); m, X, O 0

(c) Porkolab, Arunasalam, and Ellis (1972)
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Table 5.1 (cont.)

Interacting Waves References; Theoretical Assumptions

One long wavelength (a) Kim (1972); M
ordinary wave, one (b) Nishikawa (1968); M
electron plasma wave,
and one ion-acoustic (b) Lee and Su (1966); M
wave (b) Harker (1971); M

(b) Dubois and Goldman (1965); m

(b) Silin (1965); m

(c) Stern and Tzoar (1966b)

One extraordinary (b) Porkolab (1972); m, X, 8 / 0
wave, one elec-
tron plasma wave,
and one ion-acoustic
wave

One cyclotron harmonic (b) Gratzl (1971); m, X, 8 / 0
wave, one or two
electron plasma waves,
and one ion-acoustic
wave

Two ion cyclotron, or (a) Suramlishvili (1970); m, X, V 0
two Alfven waves,
and one ion-acoustic (b) Lee and Kaw (1972); M, m, If

wave (b) Hollweg (1971); M, II

(c) Belcher and Davis (1971)

(c) Dubuvoi and Fedyakov (1968)

Two (or one) lower (a) Suramlishvili (1971); m, x, X 0
hybrid waves and
one ion cyclotron, or (b) Kindel, Okuda, and Dawson (1972);
magnetosonic, wave (or m, X, 8 V 0

two ion-acoustic (b) Fidone (1973); m, X, O V 0
waves) (b) Karney, Bers, and Kulp (1973); M, X, o 0

(c) Hooke and Bernarbei (1972)
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Table 5.1 (cont.)

Interacting Waves References; Theoretical Assumptions

Two cyclotron harmonic (b) Tzoar (1969); m, x , e 4 0
waves and one ion- (c) Chang, Porkolab, and Grek (1972)
acoustic wave

(c) Keen and Fletcher (1971)

Three electromagnetic or (a) Galloway and Crawford (1970); C, X., V 0
right-handed circularly (a) Boyd and Turner (1972b); C, X, - 0
polarized waves

(a) Kim (1972); m,- . 8 - 0

(b) Harker and Crawford (1969b); C, S-, O 0 O

One transverse wave (a) Suramlishvili (1965); m, -j 0
and two longitudinal
(electron plasma and
ion-acoustic) waves

Two whistlers and one (a) Suramlishvili (1967); m, X, 8 ® 0
Alfv'n wave

(a) Harker, et al (1974); C, H-, S 0

Two circularly polarized (a) Kim (1972); m,0-, O O
waves and one electron
waves and one electron (a) Boyd and Turner (1972b); m, e = 0plasma wave

(b) Harker and Crawford (1970); M, II

(b) Sjblund and Stenflo (1967); M, I

(b) Montgomery (1965); M, II

(b) Kim, Harker, and Crawford (1971);
m,-H-, 9V0

(c) Stern and Tzoar (196 6a)

Two ordinary waves (b) Etievant, Ossakow, Ozizmir, and Su (1968);
and one extra- C, 1, ® 0

ordinary wave (c) Cano, Fidone, and Zanfagna (1971)

Two electromagnetic (b) Boyd and Turner (1972a); m, ±, 8 V 0

waves and one
cyclotron harmonic
wave,or upper
hybrid wave

129



Table 5.1 (cont.)

Interacting Waves References; Theoretical Assumptions

Three cyclotron (a) Kim (1972); m, 1, 8 1 0

harmonic waves (b) Harker and Crawford (1968); m, A, S 1 0

(c) Porkolab and Chang (1970)

(c) Chang and Porkolab (1970)
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Turner (1972b). The excitation of Alfven waves by nonlinear interaction

of whistlers in cold plasmas has been studied by Harker, Crawford, and

Fraser-Smith (1974).

Microscopic warm plasma: Using the Low Lagrangian (1958),

Suramlishvili (1964; 1965; 1967; 1970; 1971) has presented a series of

studies concerning the nonlinear interactions between electron plasma

and ion-acoustic waves, between one transverse and two longitudinal

(electron plasma and ion-acoustic) waves, between Alfven and whistler

waves, between Alfvn and ion-acoustic waves, and among magnetosonic

waves. Galloway and Kim (1971) have obtained the coupling coefficient

for three collinear, longitudinal electron plasma waves in this model.

Boyd and Turner (1972b), in a study mentioned above, have considered

the interactions between two transverse waves and one electron plasma

wave in a warm plasma. A comprehensive study by Kim (1972) has presented

the coupling coefficients, in the microscopic warm electron plasma model,

for interactions among three plasma waves, among one plasma wave and two

circularly polarized waves, among three circularly polarized waves, and

among two plasma waves and one circularly polarized wave, all of which

propagate quasiparallel to the static magnetic field. For the case

of perpendicular propagation, he has obtained the coupling coefficients

for interactions among three longitudinal cyclotron harmonic waves, and

among one longitudinal and two ordinary cyclotron harmonic waves.

Macroscopic warm plasma: In the work just mentioned, Kim (1972)

has also examined wave interaction processes using the macroscopic

Lagrangian of Section 4.2. His results include the coupling coefficients

for interactions among electron plasma and ion-acoustic waves with
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parallel propagation, and among an ordinary wave with perpendicular pro-

pagation, an electron plasma wave with quasiparallel propagation, and

an ion-acoustic wave with quasiparallel propagation.

Most theories of wave-wave interaction have been carried out assuming

the plasma to be homogeneous. In the experiments with which they have

been compared, the plasmas have often been strongly inhomogeneous,

rendering the wavenumber synchronism condition (4.48) difficult to

realize experimentally. In these cases, comparison between theory and

experiment will be impossible, unless the theory is improved by taking

background inhomogeneity into account (Kino, 1960; Larsen, 1972). In

mitigation, it should be pointed out that many of the experiments were

aimed at studying the anomalous absorption of large amplitude waves, and

the subsequent heating of the plasma (Porkolab, et al.,1972; Stern and

Tzoar, 1966b; Dubuvoi and Fedyakov, 1968; Hooke and Bernarbei, 1972; Chang,

et al. 1972; Keen and Fletcher, 1971), rather than to produce ideal

conditions for testing basic plasma theory.

Some experiments have, however, been carried out in effectively

homogeneous plasmas with synchronism in both frequency and wavenumber

realized. In particular, second harmonic generation caused by an ion-

acoustic wave propagating along a plasma column have been observed by

Litzenberger, et al.(1972). Three interacting ion-acoustic waves have

been studied by Ohnuma and Hatta (1970). Three interacting cyclotron

harmonic waves have been studied by Chang and Porkolab (1970). Parametric

excitation of ion-acoustic waves by whistler waves has been observed

by Porkolab, et al.(1972). To explain the observed wave behavior, it

was found necessary to include the effects of wave damping. With the
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exception of the case for harmonic generation by ion-acoustic waves

(Litzenberger et al., 1972), only qualitative agreement between the

solutions of the coupled mode equation and the waves observed has been

achieved (Ohnuma and Hatta, 1970; Chang and Porkolab, 1970; Porkolab,

et al., 1972). The purpose of this section, then, is to establish

more nearly complete quantitative comparisons between some of these

experiments and the theory developed in Section 4.

In this section we shall specialize the general results of Section 4

to two experimental situations. The first will be that of Ohnuma and

Hatta (1970), for which we shall consider the collinear excitation of an

ion-acoustic wave by two other ion-acoustic waves (Section 5.2), and by

two longitudinal electron plasma waves (Section 5.3). The second will

be that of Porkolab, et al.(1972), for which we shall consider the exci-

tation of a collinear (Section ;.4),and a noncollinear (Section ".5),ion-

acoustic wave by a large amplitude whistler.

5.2 Nonlinear Interaction of Ion-Acoustic Waves

..2.1 The Experiment and Interpretation

The experimental set-up used by Ohnuma and Hatta (1970) is shown

schematically in figure 5.1. Their plasma had the typical parameters:

n n. 1 109/cm , T 5 10 4 oK , Ti 3000 K
e 1 e 1

P 9 mTorr v 4.6 X 10sec , . . 3.0 X 10/sec , (5.1
en in

where the effective electron- and ion-neutral momentum transfer collision

frequencies have been calculated from (Ginzburg, 1970)
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oj > z <ALo, 30cm

10 cm
K\

AMPLIFIER

Figure 5.1 The argon (a 7.4 10 4 ) plasma column used by Ohnuma

and Hatta (1970). The pump (b Q) and signal (K , ')

ion-acoustic waves were excited with grid G . These

waves and the idler (K , ,Q) ion-acoustic wave were

detected with grid G2.
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P 2 c1/2 -
Ven 8.3 x 10 (a )e n e sec (T e in K)

v. 1.1 X 10 (a2 n -31- sec -1(T. in OK) (;.2)
in iln )

with n (cm-3) being the neutral density and m.(gm) the ion mass.

The averaged electron-neutral collision cross-section, (Ta 2)e

8.5 X 1016 cm , has been obtained from the data given by Brown (1966),

and the ion-neutral collision cross-section, (Ta2).i 3.4 X 10-1 cm

has been assumed to be roughly 4(3a 2 ) e

For nonlinear interaction among three ion-acoustic waves, a large

amplitude pump, ep(KD), and a small amplitude signal, es (K',D) were

excited by a grid immersed in the plasma. These waves and the parame-

trically amplified idler, 8i(K ",2), were then measured by a moveable grid

(figure 5.1). A typical example of the measured results is reproduced

in figure 5.2, which shows that 8 and 8 (when sufficiently Weak)
s p

decay exponentially, but that 8. is first amplified substantially from1

noise before it decays. The measured decay rate of es was found to be

roughly the linear ion-acoustic wave damping rate due to ion-neutral

collisions. But the decay rate of 8 for z 4 4 cm was found to
p

increase with the exciting voltage, Vp, applied to the grid when

Vp > Vth - 2V. This observed behavior of Fp is reproduced in figure 5.3,

and may be attributable to a combined result of wave-particle,and other

wave-wave, interactions on the large amplitude pump wave, 8p.

Interpretation of the observed evolution of ei: It was found in

the experiment that z0 (- 2 cm) is roughly independent of Vp , and

hence also independent of 8p () if we can assume P. (0) = V . To

explain this observed feature of ei, Ohnuma and Hatta (1970) used a
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S E (120kHz)kHz)

I, I
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0
D 8 (I2OkHz)

LJI-

-J

-J

CIC 0 -(80 kHz)

IZo Z
0 I ~I I I0 2 z 0  4 6 8

z (cm)

Figure 5.2 A typical observation by Ohnuma and Hatta (1970) of inter-

action among collinear ion-acoustic waves. The exciting

grid for the pump, 6 , and signal, es, is located at

z = 0. The peak of the idler, 8i, is located at z0 .
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1O E

I I
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Figure 5.3 The measured behavior of ap for several exciting voltages,

V p at the grid. For z 4 4 cm, the spatial decay rate,

p4 of 8 was found to increase with V when
p p p

Vp > Vth ~ 2V.[Ohnuma and Hatta (1970), figure 16].
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set of coupled mode equations with identical wave damping rates, i.e.

Pp = s i i = ~. Assuming (4.67), they were able to show that

ZO (- 0.7/p = 0.7/) is independent of 8 (0), as was shown in the

paragraph containing (4.67) in Section 4.4.2.

As indicated in figure 5.3, however, 4p increases substantially

with p (0) [assuming p (0) = V p]. Therefore, the theoretical behavior

of 8i  is more suitably described by assuming pp f .s = p.i = p. in

the coupled mode equations (4.64), whose solutions for this case are given

by (4.66). Furthermore, because e8 is damped nonlinearly, it is

reasonable to assume that p (0) > eth. Thenfrom (4.66), we have

_ (o).
M(Zo) M e p 1 (. 3)0 0 th

p

showing that the first condition of (4.67) fails. Therefore, the apparent

independence of ZO  in P (0) was not satisfactorily explained by the

formula Zg 0.7/ p.

Since we can only assume es(0) >> ei(0), use of (4.66) then shows

that ZO should satisfy

exp(-pZ 0 ) Z O tanh MO[  - exp(- (.4)

To determine ZO from (0.4), it is necessary to evaluate p, and

evaluate M 0  and 4p as functions of e (0)/Sth. This calls for the

examination of the linear properties and the nonlinear coupling coeffi-

cient of the ion-acoustic waves.
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5.2.2 Ion-Acoustic Waves (I) and Coupling Coefficient: 0 = 0

In this case we have K = Ki , where i is the unit vector in

the positive z direction, along which the static magnetic field is

directed. The polarization constant, M , of (4.40) then reduces to

-it
Ms Ms  1 s  1 s  s* s

M M M M = Ms
xx yy 2_ 2 zz D xy yx Q 2  2

5s s

Ms = = M == M s *  0 , D = 2-Y V 2K 2(5.5)
xz zx yz zy s ss z

For the experiment, we can assume

2 V 2  V 2
V >> CV (T >> T) V << 1 , (.6)
e i e e z

-3
where the second condition follows because V 2.9 X 10 from (5.1),

e

and Kz - 50 for a typical experiment wavelength of 0.21 cm.

Under the assumption of a low frequency longitudinal wave,

e = 10,0,13 , «<<1 , (57)

the approximate ion-acoustic wave (I) dispersion relation can be obtained

by using (5.5) and (5.6) in (4.42) and (4.43). For V K << 1, it ise z

02 V 2K 2 1 V 2
a z a a ee

where V is the ion-acoustic speed. As illustrated in figure 5.4, the
a

wave coupling synchronism conditions are automatically satisfied over the

linear portion represented by (5.8).
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i

- 1 /2 VK

Figure 5.4 The dispersion curve for ion-acoustic waves (I) propagating

parallel to the dc magnetic field under the conditions of

(5.6). The synchronism conditions for nonlinear coupling

of three ion-acoustic waves (p, s, and i) are always

satisfied over its linear portion.
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The corresponding ion-acoustic wave action, group velocity, and

coupling coefficient can be obtained by.using (5.5)-(58) in (4.46),

(4.50), and (4.53), yielding

I 1 I ^0

K 2 2 ' K -Z K z
z YV OK z z

ee z

y +1
III e

C = A - e (R 9 )
psi -K K 2 459)z z z y V K K K"

ze e zzz

i e
The significant contributions in Cp. come from the Al, A~, and

psi I I
e

AT terms of (4.46). Using (5.9), the coupled mode equations (4.52) can

be reduced to the form derived by Litzenberger and Bekefi (1969).

5.2.3 The Dependence of ZO on 8 (0)

To determine the dependence of ZO on e (0), we now have to deter-

mine the temporal damping rate of an ion-acoustic wave due to ion-neutral

collisions. This can be shown to be roughly vin/ 2  (Ohnuma and Hatta, 1970).

The plasma parameters given in (5.1) show that the ion Landau damping

rate (Ginzburg, 1970),

yL /2 (T /2 T
S+ - exp (e 10)

l[l 1

is much smaller than v. /2, and negligible. Using (5.1), (5.2), (5.8),
in

(5.9), and (4.63), we have the following values of the normalized

parameters

V e 2.9X 3  Va l.4 X 0-  , ~ 8.3X 105  , .9 , (5.11)

where we have taken Y = 5/3 as a convenient value.
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It remains to obtain the dependence of p /p and M 0 on 8 (0)/Sth

From figure 5.3, we first plot the corresponding values of p /p and the

pump wave exciting voltage, Vp, as shown in figure 5.5(a). Assuming

e (0) Vp, figure 5.5(a) indicates the approximate relations between

1p/p and 8p(0)/Sth, and MO and p/p4,

0.23-- + 0.77 , MO 4.3 - 3 .3 - , (5.12)
. th p

where the second relation has been obtained from (4.66) by use of the

first relation. Combination of (5.12) with (5.4) then determines the

dependence of ZO on ep (0)/eth, which is as shown in figure 5.5(b).

It is seen that z0 (- 2.5 cm) is in good agreement with the observed

value of 2 cm and its dependence on 8 (0)/8th according to (5.4) is

much weaker than that according to Z0  0.7/p , which is obtained under

the conditions (4.67) used by Ohnuma and Hatta (1970). Thus we conclude

that, for 8p () > eth' and with an externally applied signal wave
es >> ~, the apparent independence of ZO from P (0) observed by

Ohnuma and Hatta is likely to be a result of the increase in 4p with

ep(0).

Finally, it is of interest to examine the magnitude of 8th for

the typical pump field strength indicated by Ohnuma and Hatta, which is

E ~ 32 V/cm, corresponding to a ratio of rf to dc charge densities of

roughly 1/20. For the typical pump and signal frequencies of 200 and

120 kHz, we have, by use of (4.30), (5.1), and (5.8),

n ' 7.0 x 10 , '" 4 .2 X 10 , K 50 , Kz 30 .(5.13)
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0 EXPERIMENT
O - APPROXIMATION
I

0 Vth 10 20 Vp (volts)

(a)

yZ o  zo(cm)

I-

-3
eqn. (5.4)

2j\

25 50 Ep(O)(V/cm)

0 1
I 10 Ep(O)/-th

(b)

Figure 5.5 (a) The increase of p with the grid exciting voltage, Vp
p p

for the pump wave,as deduced from figure 5.3, and their
approximate relation. (b) The dependence of the peak

location, ZO, of the idler, Fi, on the boundary values

of the pump, p (0), according to (5.4) and the relation,

ZO - 0.7/4p used by Ohnuma and Hatta (1970).
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Then use of (4.61), (5.9), (5.11), and (5.13) gives eth 1.3 10 - 4 ,th

corresponding to a pump threshold of 4.2 V/cm. This value confirms that

the assumption p (0) > Pth in connection with (5.3) and (5.4) is

appropriate.

5.3 Excitation of an Ion-Acoustic Wave by Two Electron Plasma Waves

We will now examine the possibility of exciting an ion-acoustic wave

by two electron plasma waves in the experimental plasma discussed in

Section 5.2.1. Our purpose is to determine whether the nonlinearly excited

ion-acoustic wave should be observable under practical conditions, so that

a measurement of the coupling coefficient can be carried out.

5.3.1 Electron Plasma Waves (P) and Coupling Coefficient: e = 0

Use of (5.5) and (5.6) in (4.43) and (4.44),with the assumption of

S> 1, yields the dispersion relation for the electron plasma wave (P),

2 22 P2  1 + e = ,0, 1 . (5.14)

This P wave dispersion relation is plotted, together with that of the

ion-acoustic wave (I), in figure 5.6, which shows that the interaction

between the electron plasma (pump and signal) and ion-acoustic (idler)

waves is of the contra-flow type according to the definition shown in

figure 4 .2(b). Because the slope of the P curve at V K - 0.1 isez

much larger than Va, we have approximately K" - 2K - -2K'.z z z

The electron plasma wave action and group velocity can be obtained

by using (5.5), (5.6), and (5.14) in (4.50), giving

SP Ky z

K z ee - " (5.15)
z z
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Figure 5.6 Dispersion curves and synchronism conditions for longitu-

dinal electron plasma (pump and signal) waves (P) and

ion-acoustic (idler) waves (I).
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The coupling coefficient can be obtained by using (5.5)-(so8) and (5.14)

in (4.46) and (4.53), yielding

C A PPI 1
psi -K K'K" 2 .16)

z zz Y V K
ee z

Equations (5.15) and (5.16) may be used in (4.54) to obtain the temporal

amplification rate, F0, for the ion-acoustic wave as

T, 2 , p

0 2' v
ee

which agrees with the result given by Kadomtsev (1965), who considered

the case Y = 1.
e

5.3.2 Evolution of Fi and e
s

As an example, let us consider an ion-acoustic wave excited with

frequency 400 kHz and wavelength 1.1 cm, so that p2" 1.4 X 10- 3 and

K z 100. The corresponding pump wave number is then K 50. TheZ z

Landau damping rate, 'L pe for this electron plasma pump wave can then

be obtained from (4.81). It shows that I'ape is much smaller than the

damping rate due to electron-neutral collisions, ven/2, whose value is

given by (5.2) (Ginzburg, 1970). Thus we have TP 1.3 10 - 2 . By use

of this result,and (4.63), (4.61), (5.9), (5.15), and (5.16), the para-

meters in (4.68) and (4.69) take the values

p s 21 i .9 Z < 1.8 = 1.1

Pth 2.1 X 10 M01 2.1 10-2- - o. . (-.18)
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Since X < 1M0o << 1, the approximate solution of (4.70) can be used.

When (5.18) is substituted, (4.70) becomes

t. - (0) [exp(-2.1Z) - 10-3exp(2.1Z) + 0.021 e(0)sinh(2.1Z) exp(-3Z) ,

e +s(O)exp(23Z) - 0.0019 ei(O)sinh(23Z) exp(-3Z) (5.19)

-4
where we have assumed & (0) - 5.8 x 10 , corresponding to a field

p

strength of 17 V/cm.

The idler equation in (5.19) shows that if es(0) < 50 &in where

S(0) = 8in is the thermal noise level for some acceptable measuring

frequency bandwidth, no observable 8i(Z) above 8in is possible.

Assuming a measurement bandwidth of 2 kHz, the thermal fluctuations in

the electric field of the ion-acoustic wave branch may be estimated roughly

-4
to be 1.5 X 10 V/cm near 400 kHz (Bekefi, 1966). To excite ei to

above this level near Z 0.2, i.e. 3.5 cm from the pump sourcewith a

-7
17 V/cm pump field, will require that 8(0) > 2.5 X 10-7, corresponding

to a signal field strength of 7.5 mV/cm. According to the signal equation

in (5.19), this requirement is equivalent to having es(0.3) > 10 , i.e.

injecting a 3 V/cm contra-flow signal wave at z 5 cm.

It remains to determine whether these parameters represent an acceptable

experiment to demonstrate the interaction between collinear electron plasma

and ion-acoustic waves. According to (4.82), the condition to allow trapped

-6
electron effects on the pump wave to be neglected is 8 3.4x 106. Fromp.

(4.83), the condition to allow electron heating effects due to the pump

wave to be neglected is ep - 2.6 X 10 - 5 . Also, from (4.85), the
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plasma will not become significantly inhomogeneous due to spatial variation

-3of the pump wave amplitude, provided that a < V - 2.9 X 10 . With
p e

-k
the value of p - 5 X 10 , it is seen that, first, the assumption

8p = exp(-i4 Z) is inappropriate because of the trapped-particle effects,

thus rendering (5.19) also inappropriate, and second, according to (4.83),

the background electron temperature may become roughly 100 times the

value given in (5.1) when the pump wave is injected, thus significantly

changing the linear wave properties and nonlinear coupling coefficient

used in this subsection. Also, due to the temperature incrase, the

thermal fluctuations in the ion-acoustic wave branch may become much

stronger than the previously indicated value of 1.5 X 10-4 V/cm. As a

result, we conclude that it will be difficult to demonstrate the interaction

between electron plasma and ion-acoustic waves in the experimental plasma

defined in Section 5.2.1.

5.4 Excitation of an Ion-Acoustic Wave by Two Whistlers; Collinear
Propagation

This nonlinear process has been observed in an experiment by Porkolab,

Arunasalam, and Ellis (1972). A detailed quantitative comparison between

the theoretical results of Section 4 and the observed parametric amplifi-

cation process in this experiment will be given here. It will be shown

that there is wide disagreement between theory and experiment. The compari-

son will suggest that important factors were overlooked in the theoretical

model, and indicate possible directions in which the theory might be

improved.
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5.4.1 Experimental Observations

The experiment by Porkolab, et al.(1972) was carried out in a

steady state magnetized helium plasma column, which is illustrated

schematically in figure 5.7. The plasma has the following typical

parameters:

n n 3 X 10 12/cm T eV , T. - 0.1 eV
e 1 e 1

P 2 mTorr en 9.7 X 10 6 /sec v. 4.9 10 /sec , (5.20)
en 9in

where v and v. have been determined by use of (:.2). The effec-
en in

(a2  10-16 2
tive electron-neutral collision cross section, (a ) e 5 X 10 cm has

been obtained from the data given by Brown (1966), and the ion-neutral

collision cross section, (a2)i. 2 X 1015cm has been

be 4(Ta 2 ) e

A large amplitude whistler pump wave,with a typical frequency of

2.45 GHz and a wavelength of 1.6 cmwas injected into the plasma with

the dc electron cyclotron frequency set at 3.68 GHz. Their normalized

values are then

nOo.16 , K 1.4 , O 0.24 . (5.21)
z c

The pump wave variation was observed to be nearly exponential with a

damping length of roughly 20 cm, corresponding to a normalized damping

length of 4 0.016. A typical interferometer output is reproduced

• 1o_4
in figure 5.8, for a frequency of 7.5 MHz, i.e. O 4.9 X 10 . It shows

that the excited ion-acoustic (idler) waves consisted of two wavelengths.
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c K

Figure 5.7 The experimental set-up used by Porkolab, et al.(1972),

in which ion-acoustic (idler) waves parametrically ex-

cited by whistler (pump) waves were observed. The pump wave

(K,O) was injected into the magnetized plasma column by a

slow wave structure (SWS). The spatial behavior of the idler

wave (K","Y') was measured by use of two rf probes (Pl1 and P2),
narrow-band-pass filters (F), and an interferometer (Int.).
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AXIAL POSITION z(cm)

Figure 5.8 The interferometer output showing the ion-acoustic
1-4

(idler) waves at 7.5 MHz, i.e. 0" a 4.9 X 10

obtained by Porkolab, et al. (1972). The approxi-

mate behavior of the longer wavelength idler wave

for z 4 2 cm is shown dashed, and was obtained

by subtracting the shorter wavelength idler wave

from the trace.
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Additional measurements indicated strongly that the longer wavelength

wave propagated at 90 200 and the shorter at 0 # 500, where 8"

is the angle between K# and the dc B field. The wavenumbers were

found to satisfy K' -K and Kf 2K in the first case, andz z z z

K -K / and IK"I >> K in the second case. We shall consider the

first case under the assumption 0#  0o here, and defer discussion

of the second case with 8" 500 to Section 5.5.

It should be pointed out here that only the ion-acoustic wave in

the second case was found to satisfy the dispersion relation O p V K1
a -7

so there is a reasonable doubt that the excited idler wave in the first

case can indeed be considered as an ion-acoustic wave defined in an

infinite homogeneous plasma background. We shall proceed by assuming

that it is, and see whether the idler wave behavior shown in figure 5.8

agrees quantitatively with the corresponding theoretical results.

5.4.2 Whistler Waves (R) and the Coupling Coefficient: e = 0

Use of (5.5) and (.6) in (4.43) and (4.44), with the assumption of

2- c 1 >> i., yields the dispersion relations and polarization vectors

for the right-hand (R) and left-hand (L) polarized transverse waves,

2 2 _ eR, L -1/2z ( ) e 2 1i,0} , .22)

where the upper sign is associated with the R wave. For < c, the

R wave corresponds to the whistler, whose dispersion relation is plotted,

together with that of the ion-acoustic wave (I), in figure 5.9, which shows

that the interaction between the whistler (pump and signal) and ion-

acoustic (idler) waves is of the contra-flow type. Because the slope
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Kz

Figure 5.9 Dispersion curves and synchronism conditions for

whistler (pump and signal) waves (R) and ion-

acoustic (idler) waves (I).
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of the R curve at Kz " 1.4 is much larger than Va) we have approximately

K// 2K -2K'. Since this condition was observed experimentally, thez z z

collinear approximation to the wave interaction process is seen to be

appropriate.

The whistler wave action and group velocity can be obtained by using

(5.5), (5.6), and (5.22) in (4.50), giving

2
R 1 z 1 z (-.2)9 + +
K 2 2 2 ' rz 2 2

The coupling coefficient can be obtained by using (5.5)-(5.8) and (7.22)

in (4.46) and (4.53), yielding

C cRRI ALRI 1 z z .24)psi K K K KKK 2K 2 n (5.24)z z z zz yV K
e e z c

where we have used the relation, R = . In this expression, thei!!K K 

factor 1/y V K2 is due to the factor 1/D in M e  of (5.5). Ifeez e zz

the ion-acoustic wave (I) were replaced by an electron plasma wave (P),

this denominator would be replaced by 2 - Y V2K 2 2 1, by useee z

of (5.5) and (5.6). The resulting coupling coefficient, AK K "' is

then identical to that obtained by Harker and Crawford (1970) for the

interaction between two right-hand polarized waves and an electron

plasma wave.

5.4.3 Evolution of 8. and P_
1 s

To determine the behavior of -., we need to obtain the whistler

and the ion-acoustic wave damping rates. The whistler wave is damped by

electron-neutral collisions (Fc) and, and by cyclotron resonance (rr) when
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Q is close to 0 . They are given by (Ginzburg, 1970)c

1/2 c )2
pe) 2D(- Vc)2 exp - ( . (.2

c/c Oce z Ve2Kz (

Use of (5.20) and (5.21) in (5.25) and (5.10) shows that the damping of

the whistler and the ion-acoustic waves is predominantly due to electron-

and ion-neutral collisions, respectively. Then the first expression of

(5.25), and the relation I  in/aope give

IR =6.7 X 10- 5  r 2.5 x 10 . (5.26)

Use of (5.20), (5.21), and (5.23) gives the group velocities 1R  7.2x 10-2

and U -= V 4.7 X 10-'. Use of these results and (5.26) in (4.63) then
a

gives

-4
ts -9.2 X 10 0.53 (5.27)

where < O0 because U -i . Note that s is much smaller than

the observed spatial damping rate for the whistler pump, tp 0.016,

showing that the pump wave is heavily damped nonlinearly.

It is also necessary to determine the values Cps i and Eth before

the theoretical behavior of i. can be predicted. Using (5.21), (5.23),

(5.24), (5.26), and (4.61) then gives

6  -
C. 1.8 X 10 8 1.0 X 10 , (5.28)

psi th

where the corresponding unnormalized pump threshold is 16 V/cm. We

expect this eth to be smaller than ep(0), which can be determined

approximately from the input power and cross-sectional area of the plasma
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at the pump wave exciting structure (Lisitano, Fontanesi, and Sindoni,

1970; see figure 5.7). Taking 0.8 kW and 20 cm 2, respectively, and

-6
using (5.23), we find 8 (0) 7.2 X 10 , which is smaller than eth

of (5.28). Therefore, if both v and v. given in (5.20) were not
en in

overestimated, the theory predicts no parametric excitation of the ion-

acoustic wave.

To remove this discrepancy, let us assume that r = rs 3.4 x 10-5,

as opposed to (5.26). Then the threshold field is reduced to

66eth 7 X 10-  Use of this eth' the reduced values of 4s
-4

(- -4.6 x 10 ), (5.26), and the observed value of k (- 0.016), in

(4.69) then gives

v 17 , IM0 1 2.0 (5.29)

Because v >> IMO I  X, the approximate solutions of (4.72) can be used.

With (ll U1s/1ii) 1/2 ' 0.14 for this case, (4.72) becomes,

ei(z) e'i(0)[exp(-0.53 Z) - 0.0038 exp(-0.016 Z)

+ o.008s es(0) [exp(-0.0l6 Z) - exp(-0.53 Z)] (5.30)

The observed ion-acoustic (idler) wave has a nearly monotonic variation

from 0 to 6 cm from the pump wave exciter. According to figure 5.8, the

ratio of ei  to the apparent noise amplitude, in, changed approximately

from ./ in = 1.5 at Z = 0 to /i .in = 2.0 at Z 19. It is clear

that this observed i  behavior is substantially different from that

indicated by (5.30).
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The discrepancy between theory and experiment for this case may be

due to the effects of the finite plasma column size, the noncollinear wave

propagation (i.e. 0" 200), and some other nonlinear processes, which

were neglected in the foregoing theoretical model. In a more realistic

model, the parameters used in (4.68) and (4.69) may be modified by these

effects. It will be noted, in particular, that because i > > p > > Is

in the case of interest here, 8e(Z ) depends most strongly on 4i

(through v). If we reduce FL i by a factor of 4 from (5.27) to 4 .~0.13

and fi 0.6 x 102F, with s (s -4.6 x 10-4 ) already reduced by a

factor of 2, then we have E (0) 28eth, V , 4.7, and IMo0  2.0. Using

these parameters, (4.72) can be used to estimate 8. and 8 as
1 S

Pi(z  i(0)l exp(-0.13 z) - 0.061 exp(-0.016 z)

+ 0.038 s(0) [exp(-0.016 Z)- exp(-0.13 z)

-4
es(Z) - es()exp(4. 6 X 10 Zloz) (5.31)

Equation (5.31) gives a good match to the observed i  with 0():8s(0):.in

given approximately as 1:80:1. It is also seen from (5.31) that for

Z t 19, we have 8 s(Z) es(0) 80 e.n. To determine if this modification

in Fi is appropriate, it would be necessary to measure es(Z)/. in
s in

the corresponding experiment.

5.5 Excitation of an Ion-Acoustic Wave by Two Whistlers: Oblique
Propagation

In Section 5.4 it was shown that the observed behavior of the idler

ion-acoustic wave with wavelength 0.8 cm does not correspond to the

collinear three-wave interaction theory in an infinite homogeneous plasma
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background. Here, we shall examine the theoretical behavior of e.

corresponding to the second observed idler ion-acoustic wave with

wavelength roughly equal to 0.16 cm (see figure 5.8). Typical wave-

numbers of the idler ion-acoustic and signal whistler waves were found

to be

K" 15 , ,480  , K 14 , O '2+ 52 . (.32)

Since obliquely propagating waves are involved in this wave interaction

process, the linear characteristics of these waves may be very different

from their corresponding waves with parallel propagation. Therefore, we

shall proceed with a discussion of these obliquely propagating waves.

5.5.1 Obliquely Propagating Ion-Acoustic Waves (I'), K' = (K",0,K")
x y

In the hydromagnetic. region (0" << ne - 3.3 x 10 ), the linear

ion-acoustic wave dispersion properties may be significantly affected by

the presence of a sufficiently strong dc magnetic field. For the experi-

mental plasma of interest here, the Alfvn speed, V (0 1/2A I c
-32.8 x 10 , is much larger than the ion-acoustic speed, V a 4.7x 10- .a

The ion-acoustic wave dispersion relation,and the polarization vector in

the hydromagnetic region, are then (Ginzburg, 1970)

2 _ 2K 2
02 _V K ' 2 e [0,1,0 . (5.33)

Here e" is linearly polarized perpendicular to K/ and B.

The ion-acoustic wave observed in the experiment, however, had a

frequency a" - 4.9 X 10 , and therefore does not fall into the hydro-

magnetic region. It is necessary to examine the properties of the wave
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2 ,2 2
in more detail. Under the condition (5.6), and with 2 >> >>

we have from (4.40)

i , i i, 1 i. i. -in.

M = M 1 =M , M = M 1
xx yy . zz a,2 xy yx n/3

, 2 2+ 2 e
e -u e  u +a sin
xx 2 ' yy 2 2os

c c

e 1 [2 2 2 2 2e e -iu2
M a (a +tan e) (u +a xy yx Mzz 2 xy yx a c

zz t c

S e* +a2 e e -itane
M = M +a tane , M = M 2
xz zx 2 ' yz zy 2(u 2

nc n q(u +a

2 2 
2  2 2 b 2

Y V 2Ka2 o2 s
2 2

Although a , b << 1 in (5.34), they are included because the zero order

terms are found to cancel each other in the derivation of the dispersion

relation and the polarization vector. Substitution of (5.34) in (4.42)-(4.44),

we then have

f,2 K 2  
2K 2S 2  VK , e sin se"in cose" , (5.35)

(1/Va2 )-(K /VA2 ) a sine",,

revealing a nearly linearly polarized longitudinal wave since O" -15 ..
1

2 2 K2 2 2 2/V
The approximation. Qf2 _ V K , is appropriate because l/V 30 K /VA.a a x A

When C << , we note that e reduces to (5.33) of the hydromagnetic

case.

We may now substitute (5.34) and (5.35) in (4.50) to obtain

S' i Va sine", 0, cos" . (.36)
1 eV e2  K" K 2
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When 0, (5.36) reduces to the corresponding expressions in (5.9).

Also, we have Y. = e since U. is parallel to KI.

5.5.2 Obliquely Propagating Whistlers (R'), K = [K, 0, KJ}

Reduced forms of the plasma polarization constant, M , can be

obtained from (5.5) by use of (5.6), and the condition 2 >> V K2
ee

Sin /0 0
c

M - M /1 0 (5.37)
2  0 0 1-0 2 ,2

c

The dispersion relation and the polarization vector for the oblique

whistler wave may be obtained from (4.42)-(4.44) by use of (5.6), (5.37),

and the conditions Q < 0 and 02 a 2 sin4 ' << (2 -1)2cos26e  (see
c c

for example, Helliwell, 1965). We have

2'+ 2 cos9 2 2

K' _ i>' >

sin2 2 , Cosa + 38)
sK 2tan OK2 sin KK' 2 tanV K2sine c2

R ,2When 0' 0, e' reduces to e of (5.22). Since K 2 >> 0 we~ c

have e [ sino9, 0, cose'J, which represents a linearly polarized

longitudinal wave, corresponding to a whistler wave that is near the

oblique cyclotron resonance <' - cos" (3T/2 > "> n/2).

Use of (5.37) and (5.38) in (4.50) now gives

160



22 1 + sin + ,2 os cs
s 2(2c 2 a2 c2 'sin26 '

--_ 2 t-cose', O, sine' (5.39)
S 0 O'K sine'
c

Here, the second equation for ss is obtained by replacing Q" by

-C cose'(l - 1/K2 ), from (5.38), before eliminating terms involving

1/K "2 as small compared with unity. From (5.39), we see that the direc-

tion of 1 is perpendicular to K' and oriented so that Y = e - T/2.

5.5.3 Synchronism Conditions and Coupling Coefficient

Synchronism conditions: Since the signal and idler waves propagate

obliquely, the synchronism conditions become less obvious than those

cases shown in figures 5.4, 5.6, and 5.9. The synchronism conditions for

this case are shown schematically in figure 5.10. It contains the dis-

persion curve R from (5.22), for whistler waves with parallel propaga-

tion; the dispersion curve R' from (5.38), for whistler waves with

oblique propagation near e' + 520, and the dispersion curve I

from (5.35) (plotted with respect to a displaced origin O'), for ion-

acoustic waves with oblique propagation near e/" 480. Since the whistler

signal on the R curve is nearly at the oblique cyclotron resonance, we

have

0 ' Icose'l >> . (5.40)

RR"I
Coupling Coefficient: To obtain the coupling coefficient, CKK'IK

LR 'I R L
(4.53) shows that we have to evaluate A-KKK"' since e- e-K This
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Figure 5.10 The synchronism conditions for interaction among a whistler
(R) with parallel propagation as the pump (K), an

obliquely propagating whistler (R ') as the signal (K' ,O ),

and an obliquely propagating ion-acoustic wave (i) as

the idler (K",") . The I" curve is plotted with respect

to the displaced origin, 0, to show that the conditions,
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requires M i  and Me for a left-handed circularly polarized wave, which

can be obtained from (5.36) as

Mi = M , Me = Me '  (5.41)

Then use of (5.22), (5.34), (5.35), (5.37), (5.38), and (5.41) reduces the

LR "I'
expression for AKK K from (4.46) to a simpler form. With the parameters

given in (5.20), (5.32), and (5.40), the significant terms are, in order

of ,decreasing importance

LR"I e Me e " M ee " * Me .e

S ee f
S Me e") . (5.42)

The corresponding coupling coefficient, Cpsi is then

RRI" 1/2 K"sin 00 sin 2  1 
RR-I 2 Ksin1 (.43)

Cpsi -KK K" Q( c -) a 2_ YeVe2K2

RR I
where we have made the additional simplifications to AKK RK, I appropriate

to the experimental conditions of interest, K" - K >> Kzi e -- I

Sn' >> '", and >> V e 
2K/2 . The first term in the square brackets

of (5.43) is the combined contribution of the first two terms of (5.42).

Note that (5.43) cannot be reduced to (5.24), for the coupling coefficient

among whistlers and ion-acoustic waves with parallel propagation,by

making 0 = 0. This is because the polarization vector, e' in (5.38) for

the obliquely propagating whistlers, is nearly a linearly polarized longi-

tudinal wave, rather than a circularly polarized transverse wave of (5.22).
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. .4 Evolution of 8. and 8
1 s

For interaction of obliquely propagating waves, the coupled mode

equations of (4.79) are required. We make X = 0 because only ei along the

axis of the plasma column were measured (Porkolab, et al., 1972). After sub-

stituting the appropriate values from (5.20), (5.21), and (5.32), for

4p ( 0.016) and e ( 500), and using the experimental pump wave

-6
amplitude, e (0) 7.2 X 10 , we obtain from (5.36), (5.39), (5.43),

and (4.69),

s A -3.7 , 9.. -24 C = 4.3 x 10'
s sZ 1 iZ

M01 P2 21 (r.44)
p(0 js sz 13i z

The expression for IM0 1 is modified from (4.69) by replacing 1 and
s

1i  by Usz and hiz. respectively, following the definitions of (4.77).

To obtain piz' we must use (5.27) and 0i =  " 50 °  in (4.77).

To obtain psz' an expression for the damping of an obliquely propagating

whistler is required. It is (Ginzburg, 1970)

en (3T >_>_ _ _

pe 20 (Q cose'+ 2+
c c

which reduces to 'ven /pe at the cyclotron resonance (0, -c cose ).en pe c c

Then use of (5.45), (5.39), and (4.78) yields the value for psz. We have

4iz 0.34 , sz -6.8 x 10- 3  (0.46)

By use of (5.46), the value of 4p (- 0.016), and (4.69), we find
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1( - + 12 . (5.47)
p

According to figure 5.8, we are interested in the region where z 4 2 cm,

which corresponds to Z < 5, and hence 4 Z << 1. Therefore, from

(5.44) and (5.47), we have X I M1O > v 1, so (4.74) can be used to

approximate e. and e . Substitution of (5.44), (5.46), and (5.47)1 s

in (4.74) then gives

i(z) - li(O)cos(O.34 z) + 0.39 e (O)sin(0.34 Z) exp(-0.17 Z) ,

es(Z) s(0)cos(0.34 z) - 0.39 i(0O)sin(0.34 Z)exp(-0.17 z) , (5.48)

which have been plotted in figure 5.11. Note that good agreement of e.
1

with the experimental observations has been obtained without changing the

value of 4 given in (5.27). This indicates that this value of 4 i is

acceptable as the collisional damping for short wavelength ion-acoustic

waves (K" 1). For K/" 3, however, the results of Section 5.4

suggest that the long wavelength ion-acoustic wave may have been strongly

modified by those factors in the experiment not included in the wave

theory of an infinite homogeneous plasma background. Finally, to make the

agreement more satisfactory, s (Z) and P. should be measured ins in

the experiment to see whether the theoretical result in (5.48) is also

acceptable.
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5- 0 EXPERIMENT

0 Fi/in eqn. (5.47)

T 2 3 z (cm)

5 Io-" Z

Figure '.11 Comparison between the observed evolution of the short
wavelength idler ion-acoustic wave, deduced from a result

obtained by Porkolab, et ai.(1972) (figure 5.8), and the
theoretical evolution of i(Z) according to (5.48) with

8i(0):es(0): in given approximately as 5:4:1. The
theoretical evolution of the signal whistler wave amplitude,
s (Z), is subject to future experimental verification.
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5.6 Discussion

The verification of linear plasma wave theory imposes only the

necessity for verifying the dispersion relation, i.e. measuring

K and n. In the case of nonlinear wave-wave interaction, it is

necessary to establish not only that the linear waves satisfy the dis-

persion relation, but that also that the synchronism conditions 
are satisfied

and coupling coefficients follow theory. This requires more extended

series of measurements, providing details of the amplitude variations

of the pump, signal, and idler waves with distance. Few satisfying

comparisons between theory and experiment have been made so far.

We have tried to remedy this difficiency to some extent by predicting,

in Section 4, the wave amplitude behavior in space, taking into account

such practical factors as damping of the pump, signal, and idler waves.

In this section we have tested this theory against available experimental

results (Ohnuma and Hatta, 1970; Porkolab, et al.,1972). Unfortunately,

these experiments do not provide all the data required for a complete

quantitative comparison with theory, since they are confined to a qualita-

tive presentation of the idler wave behavior without specifying the

observed values of pump threshold, noise intensity, and, in one case

(Porkolab, et al, 1972), the signal wave behavior.

The four examples treated have all involved the excitation of ion-

acoustic waves, either by other ion-acoustic waves) electron plasma waves,

or whistlers. In Section 5.2 we have shown satisfactorily that the

observed independence of the location of the idler wave peak from the ion-

acoustic pump wave amplitude is due to the increased pump wave damping
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with amplitude. In Section 5.3,we have examined the difficulty of exciting

an ion-acoustic wave to observable amplitude by injecting two counter-

streaming electron plasma waves into a weakly ionized plasma when

appreciable collisional damping occurs. In Section 5.4, the predicted idler

wave behavior has disagreed with the experimental results. We have shown

that the discrepancy can be explained if the effective ion-acoustic wave

damping was substantially lower than that due to electron-neutral collisions.

Further theoretical and experimental work is necessary to determine

whether this discrepancy is caused by inhomogeneous plasma background,

oblique wave propagation, or by other nonlinear wave processes. Good agree-

ment has been obtained in Section 5.5, where the excitation of an obliquely

propagating ion-acoustic wave of short wavelength was considered. The

results have served to demonstrate the need for extensive and detailed

measurements to be taken, in which wave and noise amplitudes are thoroughly

documentedso that detailed comparisons can be made against theories such

as those of Section 4.

It will be realized by the reader that the averaged Lagrangian method

is more efficient and versatile than the conventional iterative method

for the description of nonlinear wave-wave interaction processes. The

results of Sections 4 and 5 can be readily applied to wave interaction

processes other than those studied in this section.
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6. CONCLUSIONS

The main aim of this thesis has been the establishment and applica-

tion of Lagrangian methods to magnetoplasmas described by macroscopic

equations. This involves derivation of a Lagrangian of which the

given macroscopic equations are the Euler-Lagrange equations obtained

by applying Hamilton's principle. We have taken two approaches to this

problem. In Section 2, we considered the general mathematical inverse

problem of the calculus of variations, i.e. the derivation of Lagrangian

densities from an arbitrary set of equations. We were able to establish

sufficient conditions for systems of first and second order, quasilinear,

differential equations, and used these conditions to transform equations

apparently not in Euler-Lagrange form to Euler-Lagrange form. As examples,

appropriate Lagrangians were obtained for a linear resistive transmission

line, and for a linear, collisional, one-dimensional warm plasma.

For reasons summarized in Section 2.5, it was found that substantial

further development is necessary before this general mathematical approach

can be used to obtain Lagrangians for plasmas. Consequently, in Chapter 3,

a suitable Lagrangian density was obtained for the macroscopic plasma

description through energy considerations, taking account of the dual

roles played by the dynamic variables, i.e. the macroscopic plasma cell

position and electromagnetic potentials. The effects of viscosity, heat

conduction, and elastic collisions were included by energy balance

arguments. To obtain the corresponding Hamiltonian, the canonical

momentum conjugate to the plasma cell position was defined in Lagrangian

coordinates, while the canonical momentum conjugate to the electromagnetic

vector potential was defined in Eulerian coordinates. The resulting
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Hamiltonian was shown to equal the appropriate macroscopic plasma energy

at t = 0. For completeness, the Hamiltonian corresponding to the Low

Lagrangian (Low, 1958), appropriate to the microscopic description of

plasmas, was obtained, and shown to equal the appropriate microscopic

plasma energy at time t. It was found that, for a collisionless (Vlasov)

plasma, the macroscopic Lagrangian could not be obtained by a simple

velocity integration of the Low Lagrangian. This fact was traced to

the loss of particle discreteness in the macroscopic approximation.

In Section 4, the macroscopic Lagrangian was expanded in terms of

small perturbations for the case of scalar pressure and adiabatic compres-

sion, and used to study nonlinear three-wave interactions in a homogeneous

magnetoplasma. The averaged Lagrangian method was applied to obtain the

coupled mode equations. These were extended to include phenomenologically

the effects of wave damping. Solutions of the coupled mode equations were

given describing the spatial variations of the signal and idler waves

under the assumption of a strong but damped pump wave.

In Section ,these solutions were specialized to experimental

conditions involving parametric excitation of ion-acoustic waves by

other ion-acoustic waves, by electron plasma waves. and by whistlers.

Quantitative comparison with available experimental data demonstrated good

agreement for situations in which the propagation characteristics of the

uncoupled waves could be measured accurately. Suggestions were given .in

Section 5.6 for improved theory and experiments to reduce the most

significant discrepancies between them.

Although Lagrangian techniques can be used to obtain complete solutions

to plasma wave problems, such solutions may not always be necessary. For
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example, in determining the oscillation properties of a bounded plasma,

the variational properties of the action integral can be used to obtain

the resonance frequencies, using only approximate trial functions for

the electromagnetic fields and plasma dynamics. We have treated one such

problem in Appendix B. The quadratic Lagrangian obtained in Section 4

was specialized to the problem of electrostatic resonances in an inhomo-

geneous plasma column. The Rayleigh-Ritz procedure was applied directly

to the Lagrangian. For a low pressure positive column, it was found

that accurate frequencies and eigenfunctions could be obtained efficiently

for the first few resonances,. provided that appropriate coordinate functions

were defined. In contrast to numerical solutions to this problem obtained

by Parker, Nickel, and Gould (1964), the variational approach was found

to be applicable for the entire range of the ratio (column radius/electron

Debye length) without incurring serious numerical instability in the

calculation of the first few resonance frequencies.

Some extensions to the work described in this thesis have already

been discussed in the individual sections. Among, and in addition to,

these are the following:

First,. the general mathematical approach of the inverse problem of

the calculus of variations was found to be less effective in practice than

the more intuitive approach by energy considerations used in Section 3.

One of the reasons for this is that the mathematical approach lacks an

independent definition of the dynamic variables that represent the degrees

of freedom in the corresponding physical problem. It would be of interest

to consider a problem in which the dependent (generalized) variables are

defined by the physical degrees of freedom before employing the general

results of the inverse problem. We have not treated the question of
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subsidiary constraints. When these are imposedthe results of Section 2

must be modified to include them.

Second, one of the long-standing difficulties associated with varia-

tional principles is that of including energy dissipation effects in a

physical system (see for example, Goldstein, 1959). We have only

partially succeeded in eliminating this drawback: in Section 2, because

of the difficulties associated with solving first order, nonlinear partial

differential equations, the examples on dissipative systems were limited

to linear equations; in Section 3, by closing the system of energy transfer

in the macroscopic plasma, the effects of viscosity, heat conduction, and

elastic collisions, were included in the Lagrangian. These effects had

to be discarded in Section 4.2, however, because of difficulties involved

in obtaining the corresponding perturbation approximations. The phenome-

nological approach used in Section 4.4.2 includes the wave damping effects

in the coupled mode equations, rather than the Lagrangian leading to them.

It would be of interest to see if dissipation effects could be included

in the Rayleigh-Ritz procedure used in Appendix B. A possible procedure

has been suggested by Mikhlin (1964).

Third, the results of Section 4.3 were written completely in terms
of quantities representing the linear wave properties: the polarization

vector e, the plasma polarization constant Ms, the frequency 0, and

the wavenumber K. In the case of nonlinear wave-wave interactions, the

averaged Lagrangian method is equivalent to expressing the approximate

Lagrangians in terms of the linear eigenfunctions, e exp[i(OT-K .X)],

of the homogeneous plasma. The Manley-Rowe relations, and the synchronism

conditions, can then be viewed as results of the orthogonality property

of these eigenfunctions. Extensions of the averaged Lagrangian method
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to inhomogeneous plasmas should then be straightforward: we would start

with the general energy conservation theorem derivable from the approximate

Lagrangians obtained in Section 4. A formal substitution of the eigen-

functions, in place of the dynamic variables, could then be made. The

orthogonality property of the eigenfunctions should lead to selection

rules for the appropriate eigenvectors, and a power balance relationship

between the interacting linear modes. In those cases where the exact

eigenfunctions are difficult to obtain, the approximate eigenfunctions

could be obtained by the Rayleigh-Ritz method used in Appendix B.
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APPENDIX A: SOLUTION OF ULTRAHYPERBOLIC EQUATIONS

To obtain the solution of the homogeneous part of (2.26),

2 2
y + = u 0 (A.1)

when at p and i ; j, we first convert it to ultrahyperbolic form

(Koshlyakov, Smirnov, and Gliner, 1964),

2 2 2 2

2 2 2 2 - (A.2)
1 2 1 2

by the substitutions,

U~= s+1 = ,s 1 = s+t2 U = s2-t 2

(U , U U13 UC' U,' 2) . (A.3)

Equation (A.2) is similar to the wave equation in a homogeneous two-

dimensional medium, but with two-dimensional time coordinates. Its

general solution can readily be obtained by separation of variables.

Assuming

S= V(sl) v 2(s2 ) wl(t ) w2(t 2 )  (A.4)

leads to the system of ordinary differential equations,



d 2v d2 v d2 w
SV2 1
2 - alv1 2 a22 1 2 b1 1ds ds dt1

1  2 1

2 = b-w2 al + a2 = bl + b2 A.)

where al, a2 bl., and b2  are constants. The explicit solutions of

Vl, etc. are sinusoidal functions. Because no boundary conditions or

initial values restrict the solution for the general solution of

(A.2) takes the form,

S= dalda2db C(al,a2, b 1)V(alv2(a2)Wl(b l)2(al+a2-bl (A.6)

where the weighting function, C(ala2,bl), will be restricted by the

sufficient conditions of (2.31), (2.32), and (2.34).
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VARIATIONAL CALCULATIONS FOR RESONANCE OSCILLATIONS
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ABSTRACT

In this paper, the electrostatic resonance properties of an inhomo-

geneous plasma column are treated by application of the Rayleigh-Ritz

method. In contrast to Parker, Nickel, and Gould (1964), who carried

out an exact computation, We have used a description of the rf equation

of motion and pressure term that allows us to express the system of

equations in Euler-Lagrange form. The Rayleigh-Ritz procedure is then

applied to the corresponding Lagrangian to obtain approximate resonance

frequencies and eigenfunctions. An appropriate set of trial coordinate

functions is defined, which leads to frequency and eigenfunction esti-

mates in excellent agreement with the work of Parker, et al. (1964).



1. INTRODUCTION

This paper is concerned with the use of the Rayleigh-Ritz procedure

to estimate the electron resonance frequencies of a warm inhomogeneous

plasma column. This procedure has been extensively applied to single self-

adjoint equations with great success (Mikhlin, 1964). For a system of

equations, however, theoretical extensions have been noted only for the

case of elliptic equations (Mikhlin, 1965). For the equations to be

used here, which are not elliptic, it will be shown that accurate resonance

frequencies can be predicted,provided that a certain set of coordinate

functions is defined.

Previous theoretical treatments of the electron resonance problem

give predictions which agree well with experimental data. However, these

approaches have encountered difficulties stemming from the inhomogeneous

electron density profile. For example, Parker, Nickel, and Gould (1964)

solved numerically an appropriate fourth-order differential equation for

the rf potential in a cylindrical positive column. Because of the exponential

nature of the solutions in the cutoff region, their calculations were

limited by the condition, a / D < 4500, where a is the column

radius, D (= E0 KT/ne
2 ) is the mean-squared Debye length, and nO

is the mean electron density in the column. Baldwin (1969) used a

kinetic model in the low-temperature approximation to obtain the external

admittance of a cylindrical plasma capacitor. The appropriate differential

equation was solved after using inner-outer expansions connected through

the resonance region. A WKB description was used for the inner region,

where resonant waves are essentially evanescent, while a travelling wave

description was used for the outer region, where Landau damping is important.

Because the wave nature of the solutions was assumed in the outer region,

2



this theory is appropriate only for higher order resonances. Similar

difficulties have been shown to occur in the simpler one-dimensional model

(Harker, Kino, and Eitelbach, 1968; Miura and Barston, 1971; Peratt and

Kuehl, 1972).

Variational methods offer an attractive alternative to these treatments.

They have been used previously to estimate plasma resonance frequencies

with simplified trial functions. Resonances of a cold inhomogeneous plasma

were treated by Crawford and Kino (1963). Using the variational principle

established by Sturrock (1958), Barston (1963) approximated the dispersion

relations for wave propagation along an infinite cold plasma slab, and

along the interface between two semi-infinite, counter-streaming cold

plasmas. Some general features of the guided waves on a cold, transversely

inhomogeneous plasma column in an axial magnetic field were studied by

Briggs and Paik (1968). These papers (Crawford and Kino, 1963; Barston,

1963; Briggs and Paik, 1968) show that, with appropriate variational

principles and judicious choices of trial functions, useful results can

be obtained with relative ease by the variational approach.

A theoretical variational formulation for the electrostatic resonance

oscillations of a warm, inhomogeneous plasma column in a dc electric or

magnetic field of arbitrary direction was presented by Barston (1965)

with the adiabatic index, 7 , taken as unity. The variational prin-

ciple to be presented here, however, is not restricted in the values of

7 . One important feature in Barston's (1965) analysis is that the

rf electric potential was treated as the solution of the rf Poisson

equation, with the rf electron density considered given. It will be

seen that the coordinate functions to be used here are defined in a

similar fashion. A variational method of the Rayleigh-Ritz type has

3



been applied successfully by Dorman (1969) to a one-dimensional, warm,

and field-free plasma with arbitrary dc density profile. A single

second order differential equation for the electric field was obtained,

and shown to have hermitian operators. The variational principle to

be used here differs from Dorman's (1969) in that we are dealing

directly with a system of Euler-Lagrange equations. In so doing, we

can keep down the order of the equations, and are able to consider

warm inhomogeneous plasmas in more than one dimension.

In this paper, we shall show that by appropriate definitions of the

rf equation of motion and pressure term, the equations of the hydrodynamic

model used by Parker, et al. (1964) become Euler-Lagrange equations. This

will enable us to demonstrate the effectiveness of the Rayleigh-Ritz

procedure in estimating the resonance frequencies of an inhomogeneous plasma.

The associated numerical method mainly involves evaluations of definite

integrals and solutions of finite algebraic eigenvalue equations, and is

applicable over the entireorange of a /XD >> 1 for estimating the first

few resonance frequencies.

In most of the papers that deal with the electrostatic resonance

problem (Crawford and Kino, 1963; Parker et al., 1964; Harker et al., 1968;

Baldwin, 1969; Dorman, 1969; Miura and Barston, 1971; Peratt and Kuehl,

1972), it is assumed that the rf plasma current normal to the glass wall

2 2
is zero. However, in the low temperature limit, a / D , the main

resonance frequency seems to agree with that of cold plasma theory,in which

the normal rf plasma current is retained. We consider this problem and

show that the resulting difference in predicted resonance frequencies is

negligibly small for low pressure positive columns.

4



In §2, we present the basic equations, the corresponding Lagrangian,

and the procedure to be applied in the variational approach. In 83, the

numerical methods are explained before comparing computations with those

of Parker et al. (1964). The paper concludes with a brief discussion

in §4.

5



2. THEORY

For a low pressure positive column, moment equations with scalar

pressure and negligible heat conduction are appropriate when the wave

phase velocity is much larger than the thermal speed. For the first few

electrostatic resonances, the wave phase velocity may be scaled to pa ,

where W p[=(e2nO(0)/me0 ) 1/2 is the axial plasma frequency. Thus we require

a/XD > i. A stationary ion background will be assumed, since we are

interested only in electron resonances. Dissipation due to collisions,

and Landau damping, will be neglected. Our analysis will consequently be

valid only for the first few resonances. Also, the analysis will be quasi-

static. Apart from some differences in definition of the rf equation

of motion and pressure term, the equations we shall use are essentially

those used by Parker, et al. (1964). The equations are generalized here

to include dc magnetic field, B and electron drift velocity, v

We have,

an
-- +  (nv) = 0 , 8-E + e(n-n )= 0

mn -+ v*"v + VP + en (E + v X B) = 0 at +  (1)

Specialized to small perturbations, these reduce to the de equations,

O*(nOv O ) = 0 , e 7.E + e (n 0-n ) = 0

(2)
mnov ov +VPo+ eno(E + O) = 0 (at r O  ,

and rf equations,

an1
-t + r'(n vl + nl 0) = 0 , E r£ + en -= ,t 0 -1 *

mn 0 k + ('[)uP 0 + VP1 + '(PP O

+ en0 ( V + E1 + jX B + X Bl ) = (3)

6



where = dg/dt = 2/dt + v.* . In these equations, m and -e are

the electron mass and charge; n and P are the electron density and

pressure; E is the electric field; n I is the ion density; E0 is the

vacuum permittivity; and I is the perturbation displacement for the

electrons (Figure 1).

The magnitude of v0 is relatively small in the plasma region, but

increases in the sheath region from the ion-acoustic speed to roughly the

electron thermal speed at the glass wall (Self, 1963; Parker, 1963). We

shall consequently neglect it in our analysis. However, due to the presence

of non-zero v,' , and an rf electric field at the wall, a non-zero rf

normal current term arises, and hence an rf surface charge term. The

inclusion of this surface charge term, in the cases where the electron

rf excursion exceeds the Debye length, is equivalent to the use of the

dielectric model for a cold plasma column (Crawford, 1965). Further

discussion of this surface charge term will be given in V3.4. With v0

neglected, the following relations become appropriate

no(r) = nO(0)f(r) , f(r) = exp[-ecpO(r)/KTe]

(4)

n= -v(n) , 1 ,

where K is the Boltzmann constant, ~O(r) is the dc column potential,

E (r) = -Vc (r) , (5)

and the first equation of (3) has been used to obtain nl. The rf

electron pressure, P1 , is determined by the adiabatic equation of state,

P(r 0+)/P (r) = n(r-+O)Y/n O (r ) P = n KTe (6)

The form of (6) can be understood by reference to Figure 1, and

follows from the fact that when a cell is displaced from r to r +

7



n(ro +)

P(ro+C)

Po (ro)

0

FIG. 1. Definition of plasma perturbation.
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P is defined for the given cell,rather than for the given position, r
-0*

The adiabatic equation of state must consequently be applied to the same

cell, before and after the displacement. Using the usual definition of

perturbations,

P(r) = P (r) + P (r) , n(r) = n0(r) + nl(r) , (7)

and (4), we obtain

P1 = -YPoV' - VP0 . (8)

The rf force law in (3) is obtained by comparing the force laws in (1)

and (2) in the same fashion (Newcomb, 1962).

It is now straightforward to use (4), (5), and (8) to rewrite (3)

in terms of only J and the rf potential, cpl(-P 1 = E

mnC - (7-1)vP 0 .- - 'VP 0 - 0 )

- en 0 ( 1 + -VVP0O - x) = 0 ,

2
EV 2 1 + eV.(n0 ) = 0 . (9)

Equations in (9) can be Fourier-transformed, normalized, and expressed

in a cylindrical coordinate system, (r,8), for a column of cylindrical

symmetry,

02f r  c 2[ i i

+ D f( r + r R ) + f0r ) = O , (10)

2 c2f, 1 2 ( , 1

0 f C QcO + D r D R r R -r - R e

+ f + , (11)

9



S(R 1 + (Rf R = 0 , (12)

where the derivative with respect to R is denoted by (') and

S0(0) = O , =-r r + (ie )

1(R,O,T) =E dQ1 (R)exp i(CT+L9) , (13)

with i denoting unit vectors. The normalized quantities are defined as

R = r/a , T = Wt , O = W/w ,

Oc = eBO/Bp a ,

2 2 2 2 2 2
AD =D/ = T0 e/nO(0)e a = pc/n(0)ea2 , (14)

and a static axial magnetic field, BO , has been included.

2.1 Lagrangian Density

The forms of the force law in (3),and the rf pressure in (7)

represent the important differences from the paper by Parker, et al. (1964)

in that they make (9),as well as (10)-(12),systems of Euler-Lagrange

equations without having to restrict the values of 7 (Barston, 1965).

In one of the models used by Dorman (1969), an appropriate pressure term

similar to (7) was used without the benefit of the rf force law in (3).

As a result, he was able to establish the variational principle only for

the one-dimensional case.

The Lagrangian corresponding to (10)-(12) can be shown to be the

following, by straightforward application of Hamilton's variational principle,

10



12 = fo d
( 

2  ( l )  
t( ,) = D2 A - c2 DB + H

1 1

A fRdR (IrI2 + I2) ' B = fRdR (r + *rO)

O O

H =-A D (T+T) - VOS - I+F+F' < 0

1

T = fRdR''+ 1 21 f r + -r ) + c.e '7
- ,2 + . JR=

S z rr r 0 JR=1

1

T' = fRdR r( -) + C*) + C.C.

0

+ 2 [fC*(- 
r  + f r) + ) + c.c.]R=1 '

1

S = fRdR (¢oCr2 + r oC,12)

0

1 1

I fRdR 1 + C + c.c., F = RdR + 12 112)

0 0 R

Rb 
R

F' = egRdR (l2 IjI2 + RdR (,2 2
0 R R R

Rb

b
Rb =Rc (15)
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where c.c. denotes complex conjugate. Equation (15) is appropriate

to the configuration shown in Figure 2 of a concentric metal cylinder

surrounding a glass tube, of relative permittivity E , that contains

the plasma column. In the expressions for T and T' , the boundary

terms are included to modify the natural boundary conditions on C7

and C. (see for example, Courant and Hilbert, 1953) that would other-

with be unphysical. In the expressions for H and S , 0 0 (r) and VO

are defined as

00(r) = - (r)/VO , VO =- (a)

Substitution of the exact solutions of (10)-(12) would make £2( ,)

zero. We see from (15) that, for negligible ic ' D , and V0 , the

resonance frequencies are determined essentially by the values of I, F,

and F' . Since V0 is approximately proportional to AD (Self, 1963;

Parker, 1963), the effect of higher electron temperature is to raise each

resonance frequency. When Oc 0 , the roots of £2( ,4) = O are

1,2 = QcB/2A [(Q cB/2A) 2 - H/A]1/2 (16)

Since Q and - L are indistinguishable in experimental observations, we

.see that all the resonance frequencies are predicted by (16) to split

in two,in agreement with the theoretical results of Barston (1965), and

Vandenplas and Messiaen (1965). For sufficiently small Oc , when the

values of B and A are not greatly affected by the presence of an

axial static magnetic field, the amount of-the split, IncB/AI , will

be proportional to Oc. This is in agreement with the observed splitting

character of the main dipole resonance frequencies (Crawford, Kino, and

Cannara, 1963; Messiaen and Vandenplas, 1962). Furthermore, since

A IBI, where the equal sign applies when y a ( ' this split is predicted

to be always less than or equal to c

12



FIG. 2. Plasma column geometry.
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2.2 Rayleigh-Ritz Procedure and Coordinate Functions

For a single linear Euler-Lagrangian equation, the Rayleigh-Ritz

procedure is efficient in obtaining an approximate solution,by use of a

weighted summation of a set of judiciously chosen coordinate functions.

These coordinate functions must be linearly independent and complete,

and satisfy the boundary conditions specified by the problem. The

weighting coefficients that appear in the approximated Lagrangian are

varied independently. This results in a system of algebraic equations

that take the place of the original equation. Theoretically, better

approximations can be obtained by using more coordinate functions. When

eigenvalues are involved, the approximate eigenvalues always converge to

the exact values from above (see for example, Mikhlin, 1964).

Much less attention has been given to the analogous problem for a

system of linear Euler-Lagrangian equations, e.g. (10)-(12), though the

theoretical extension of the variational method to a system of second order

elliptic equations has been mentioned by Mikhlin (1965): the way to set

up the corresponding coordinate functions is similar to that for the single

equation case, i.e. the coefficients of each dependent variable are varied

independently.

For our problem, in which (10)- (12) are not in elliptic form, the

coordinate functions and the coefficients must be more restricted. In the

Appendix to the paper it is shown that acceptable estimates of resonance

frequencies and eigenfunctions can be obtained for our problem provided

that the coordinate functions chosen for each dependent variable are

related by (10)-(12).

By expanding Cr, , and 1 in power series of R, and substituting

in (10)-(12), we see that for small R , r C R - 1 , and W

14



Thus, for ( 1 , the solutions are well behaved at R = 0 . If we

also choose even functions for f(R) and 0 (R) , then 5r and C' are

even in R , and 1 is odd in R , when t is odd, and vice versa.

Since there are no other singularities in (10)-(12), polynomials in R

constitute appropriate coordinate functions for our problem. For convenience,

the coordinate functions chosen for Sr will be

r = R - l - R+2j-1 (j = 1,2,...) , (17)

which conform to the usual assumption of zero normal rf current, since

rj (1) = 0

Rather than choosing C.j and l,j independently, we must determine

them via the original differential equations and (17). After eliminating

1 in (10) and (11), it follows by using the second equation of (4) that

RO2(RC' + - tcr ) = [R Oc Q + t(7-1)A0 ](Rr + '- )e) (18)

With a given expression for o0 (r) , and an assigned value of 0 , e.g.

= 1 , .j can then be easily determined for any given rrj

An immediate question arises concerning the dependence of the resulting

variational estimate of resonance frequencies on the size of 0 chosen

arbitrarily here. We have found that the first few resonance frequencies

-4do not change by more than 10 4  when 0 in (18) changes from 0.4 to 1

for all the values of l/A2 used in this paper. If this were not the

case, an iterative procedure would have to be used, i.e. the resulting

variational estimate of Q would have to be used in (18) to obtain a

new set of j . These would be used in turn to obtain improved frequency

estimates, and so on.

The corresponding coordinate function, lj ' is obtained by solving

(12) (Barston, 1965),with conditions of continuity of potential and normal

displacement across the boundaries defined in Figure 2. According to the

15



discussion given in the Appendix, identical coefficients are assigned to

each set of coordinate functions,

N N N

Cr = aj rj r 6 = aj ,  1= a 1 ,j , (19)

j=l j=1 j=1

before substitution in the Lagrangian, 2(,t), of (15). The resulting

Lagrangian then gives the algebraic Euler-Lagrange equation below,

N 2

(Q2Aji - CO B. + Hji)a = 0 (i 1, 2, ... , N) ,

1

Aij = fRdR(ri rj + oi j) . (20)

where A. , B.. , and H . -are the matrix-elements of the integrals, A,ij 13 13

B, and H, given in (15), respectively, and are obtained by substituting

the coordinate functions in a fashion given by the above A.. expression.

Equation (20) can be transformed into a generalized eigenvalue problem

(Dorman, 1969)

2N

S(2Aij - B. )b. 0 (i = 1,2,... , 2N)

I 'j=l

b. (ai,a ) (j = 1,2,..., 2N, i = 1,2,... , N) ,

-H 0 0 -H

A ( B =(+ ) (21)

with superscript + signifying the transposition of a matrix. Equation (21)

is now solvable by standard computer codes.

16



3. NUMERICAL METHODS AND RESULTS

The computing procedure is straightforward:

(i) read in physical and computational parameters,

(ii) compute coordinate functions j , ., and all other functions

appearing in the Lagrangian, P2( ,i) , at intervals Ar ,

(iii) compute 22 (Q,) by Simpson's rule to obtain Aij , B..ij , and

H.. , and

(iv) solve (21) for Q and aj ,and compute relevant eigenfunctions for

N, N-1, and N-2 coordinate functions.

3.1. Approximate DC Density Profile

A density profile which approximates Parker's results (Parker,

1963), and is convenient for both analytical and numerical manipulation,

is given by

f(R) = exp[- 0 (R)] , 40 (R) = iR 2 + (1-)Rh , (22)

where h(> 2) is an even integer, < 1 , and [= V0/A ] is the wall

value of the potential function, J(r) , used by Self (1963) and Parker

(1963). The particular form of (22) is used to justify the choice of

coordinate functions of (17). Furthermore, with the use of (22), Cej

and l,j can now be solved analytically in terms of power series in R,

in addition to the numerical solutions of (12) and (18). Comparison of

the solutions by the two methods will provide an estimate of the degree

of accuracy achieved in obtaining 0,j and l1,j

The values of P and h are varied until f(r) best approximates,

by least-square deviation, the profile given by Parker for specified values

of AD and ~ . The resulting profiles are shown in Figure 3, and the

corresponding values of p and h are given in Table 1. It will be

seen that as increases in value, (22) decreases in accuracy because

17
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1 0

FIG. 3. Comparison between (22) (indicated by dots), and Parker's

density profile, for the parameters given in Table 1.



Table 1

Parameters used in (22), and Figure 3, for a mercury-vapor

positive column. The conversion between l/A2 and 1A2

D D
is obtained by the calculations of Parker (1963).

2 2 2 2
1/A 1/AD 1 h E2 t 2R

2 1 * 4a 3.4 X 10 7.2 X 10 6.72 0.447 4 6.2 X 10 - 4

b 1.3 X 103 5.1 X 102 6.60 0.221 8 i.3 X 10-4

c 8.2 X 103 4.5 X 103 6.52 0.159 20 t6.2 X 10 - 4

d 6.7 X 104 4.3 X 104 6.44 0.142 54 t2.9 x 10- 3

e 6.2 X 105 4.2 X 105 6.40 0.141 156 t7.5 X 10 - 3

f o m 1.08 0.644 12 tl.3 x 10-4
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of the increasing degree of steepness displayed by the density profile

in the sheath region. At zero temperature, the sheath is omitted and

an accurate approximation can again be obtained. The approximation of

(22), however, was found to be sufficient to give accurate frequency

and eigenfunction estimates for all of the values of 1/A listed in

Table 1.

20



3.2. Solutions for C j and l,j

By the use of (14), (15),and (19), C6j can be put in the

form of a rapidly converging series,

j =R -1 - j+l,i R+2j+(i-l)(h-2)-1

i=l

j 2+(Z+2j-2)- - 28 (7 -l)V0

- (Z+2j-2) + ic -2 B (7 -1)Z£V

(7-1)(i-P)hVO[Jaj, 1-(i+2j-2)]

2(C+ 2 j+ h - 4 )+ c - 2 (7y- 1 ) v O

-2(r-)(i- 4)hV0j,i 2 j ,i-1  (i > 3). (23)
iQ 2(h-2)

Since the maximum value of V0  of interest is roughly 0.02 and

Q2 ' 1 , one needs at most five or six terms in (23) to attain a precision

-8
of 108 for C@j .

To solve for 01,j , the predictor-corrector method of Adams-Bashforth

(Fox, 1962) has been used on (12), which can be reduced to the form,

S =  
2 /R , 2 

= g(R) + k2 1 /R

1 l,j ' Y2 
= Rl,j '

g(R) = f(-R1w 00rj + R 'j  + j - £C j) (24)
21rj rj rj
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Since the complementary solution of (24) is N y R and its
l,j 1

P R +2j
particular solution, yl , is proportional to R near r = 0 ,

P' P/
l (0) and y2 (0) are both equal to zero. So the starting values of

P P
y and y2  are well-behaved, and easily obtained by Taylor series

expansion near R = . The total solution of 1,j can then be written

as

l, = c R +  l , (25)

where cj is determined by imposing the boundary conditions of 1

By making the interval Ar = 0.01, and using double precision, ij
-8

can be calculated to within 10 . This is arrived at, first, by com-

paring results that use different values of 6r , and secondly, checking

against solutions of (12) obtained by power-series expansions in R

3.3 Numerical Instability

In the process of solving the algebraic equation,(21), the size

of N is limited by the inaccuracy involved in obtaining A.. , etc.

This inaccuracy introduces a numerical instability whenever the coordinate

functions are not orthogonal functions with respect to the differential

operators of (10)-(12) (Mikhlin, 1971, Chap. 2). The situation is best

illustrated by an example in which the dipole resonance frequencies

corresponding to Figure 3(b) are calculated for different values of N

while holding the size of Ar constant at 0.05.

As shown in Table 2, as N is increased from 2 , the first few

resonance frequencies are approached from above with rapidly stabilized

estimates. When N is increased beyond 8, undesirable fluctuations

larger than 10- 4 , and clearly erratic changes in the values of D , start

to appear. In the case N = 9, for example, one would obtain an erroneous
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Table 2

Dipole resonance frequency estimates obtained with Ar = 0.05

for the case of Figure 3(b). Significant numerical insta-

bility sets in when N 8 . The 'best estimates' are

obtained with Ar = 0.01 and N = 9

N Main First Second Third Fourth

Best estimates: 0.4447 0.7099 0.8746 0.9924 1.080

2 0.4703 0.8813

3 0.4486 0.7446 0.9250

4 0.4450 0.7155 0.8818 1.022

5 0.4448 0.7119 0.8757 0.9958 1.084

6 0.4448 0.7117 0.8753 0.9956 1.084

7 0.4448 0.7104 0.8751 0.9947 1.082

8 0.4448 0.7098 0.8748 0.9921 1.081
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fundamental resonance frequency. Characteristic of the variational

nature of the Lagrangian, £2(0,t), more serious errors are found in

the approximate eigenfunctions, than in the resonance frequencies. The

optimal combination of N and Ar , that produces acceptable results

in the shortest computation time, can be obtained by trial and error.

Repeated solution of (21) for a few adjacent values of N thus becomes

an economical technique: this requires computation of the matrices A..

etc. only once, and offers safeguards against obtaining erroneous results

due to numerical instabilities.

3.4 Computer Results

As a practical example, the approximate density profiles given

in Table 1 have been used to predict dipole resonances for Tube No. 1

used by Parker, et al. (1964) (t = 1; a = 0.5 cm; effective relative

permittivity at the surface of the column Keff 1 = 2.1). The

computation time varies roughly as N2 . With N = 10, a typical calcu-

lation takes about 40 seconds, and requires a core space of less than

100K bytes in an IBM 370/67 machine.

The resulting approximate solutions for gri , nl' 1' , and (p

are plotted in Figures 4-6. The density and the radial electric field

solutions, n1(R) and 1 resemble very closely those given by Parker, et al.

(1964), and Parbhakar and Gregory (1971), respectively. The relative

amplitudes of gr and shown in these figures are retained, revealing

that as I/AD increases, Sr progressively dominates over (e. For

1/AD > 4500 , it will be seen that the perturbations should be progressively

compressed toward the sheath region as 1/A increases in value. These
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solutions are not reproduced here because they also exhibit undesirable

oscillations with wavenumber equal to N , an expected characteristic

when we try to approximate rapidly varying functions with truncated

polynomials. Since only a moderate computer storage is used for N 10 ,

there is room to increase N, and decrease Ar, to obtain better approxi-

mate solutions. However, this is considered unimportant for our purpose,

since we are able to obtain good frequency estimates for this region with

N : 10, as Figure 7 reveals.

The corresponding estimates of resonance frequencies are shown in

Figure 7. Since the electron temperature corresponding to the experimental

resonance data of Parker et al. (1964) was adjusted to fit their theoretical

spectrum, it would be reasonable for us to make a similar adjustment. As

is evident from Figure 7, however, no such adjustment is necessary. Indeed,

our result seems to be in slightly better agreement with the T = 3 eV
e

data. The minor differences between the two theoretical results probably

come from the differences in the rf equation of motion and pressure

term used in the two treatments

Similar to other papers (Crawford, 1964; Parker et al. 1964; Harker

et al. 1968; Baldwin, 1969; Dorman, 1969; Miura and Barston, 1971; Peratt

and Kuehl, 1972), we have assumed zero normal rf plasma current density

at the glass wall,through the form of Crj in (17). This is appropriate

when the plasma is sufficiently warm that the electron excursion velocity

is much smaller than the thermal speed,and f(l) << 1 . This assumption,

however, is inconsistent with the dielectric model for a cold plasma

column, where normal rf plasma current must be included. It is of

interest to ask why the main resonance frequency of a warm plasma column,
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FIG. 7. Dipole resonance spectrum of Tube No. 1 (Parker et al.), compared with

estimates by the variational method (indicated by crosses).



in the limit of low temperature, approaches the principal resonance of

a cold plasma column. To answer this question, we need only change (17)

to

Crj = R-1+ (j = 1,2,...), (26)

and impose the requirement of continuity of normal displacement in the

form

(1 ) + f(1)Cr(1) = cg(1 + ) . (27)

The resulting solutions of Cr are found to be only slightly different

from the previous case near R = 1 [Figures 4-6, where the dashed lines

correspond to the use of (17)]. Furthermore, the main resonance is

lowered by less than 1 per cent for all of the values of 1/ used

here, including the case l/A . This is well within the experi-

mental errors.
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4. DISCUSSION

In this paper, we have applied the Rayleigh-Ritz procedure to a system

of three Euler-Lagrangian equations that describe the electron resonances

of a nonuniform warm plasma column. It is shown that accurate frequencies

for the first few resonances can be obtained for the entire range of

1/A >> 1 . Results which agree closely with those of Parker, et al.

(1964) have been obtained

Contrary to the case of a system of elliptic equations, where the

coefficients are assigned independently to each dependent variable

(Mikhlin, 1971), we have found that for (10)-(12), the same coefficient

must be assigned to each set of coordinate functions, e.g. (19). In

addition to the usual requirements,that the coordinate functions must be

linearly independent and complete, we have chosen that they be set up in

accordance with (10)-(12).

The present method can be easily modified to include the effects

of electron dc drift, dc magnetic field, and ion motion. With the axial

dimensions and rf magnetic field included, this procedure would be efficient

in solving travelling wave problems in a nonuniform plasma waveguide.
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APPENDIX

Here we shall show that the coordinate functions, crj I ,ej ' and

,j, must be assigned the same coefficients, aj , for the Rayleigh-

Ritz procedure applied to £2(cA) of (15) to be successful: it will

be shown that, by restricting these coordinate functions according to

(10)-(12), the appropriate Rayleigh-Ritz procedure can be established.

A system of second order elliptic equations can be written as

(DjkU)' + XEjkU = 0 , Djk = D kj , Ejk = Ekj (A.1)

th
where Uk  is the k dependent variable, the matrices Djk and Ejk

are functions of the independent variable x , the eigenvalue is X( 0),

and the summation convention has been used. Ellipticity demands that

Djkja k > 0 , Ejkj Ck ~ 0, (A.2)

for any real non-zero vector a. . The solutions of (A.1) then admit

of variational estimates, as outlined by Mikhlin (1965).

When we apply the Rayleigh-Ritz procedure to the Lagrangian for (A.1),

1

L = dx (DjkUjUk - X EjkUjUk) , (A.3)

0

the coefficients preceding the coordinate function for each Uk  can be

varied independently. Suppose a set of legitimate trial functions,

Uk = CkVk (summation convention not used here) with coefficient Ck , are

used in (A.3). Because of (A.2),we can obtain crude estimates of

larger than the lowest eigenvalue,even if only one of the Ck  is non-zero.

If the same procedure is applied to the Lagrangian in (15), we will

obtain erroneous estimates of L1 . Consider the case of a cold, uniform

plasma column with B0 = 0 , so that H =-I + F + F' . Suppose C
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C and C are the coefficients for the coordinate functions rj

CrO and ij , respectively. Then if C = , the value of the R

estimate will be zero, and fail the requirement of the Rayleigh-Ritz

sequence.

Consequently, to make (-H/A)1/2 from (15) at least non-zero, we

must use a single coefficient for each set of the coordinate functions

Crj ' j , and 1,j Merely making Cr = CO = C a. is insuffi-

cient to produce a legitimate Rayleigh-Ritz sequence, because the value

of i for example, can be arbitrarily small in comparison with

Crj and Cej , making the Q estimates also arbitrarily small. We

see that restricting these coordinate functions according to (10)-(12),

is sufficient to reduce the resulting approximated Lagrangian to a single

Euler-Lagrange equation. The appropriateness of the resulting Rayleigh-

Ritz procedure can then be guaranteed. It is conceivable, of course,

that there may be less restrictive choices of appropriate coordinate

functions corresponding to the Lagrangian in (15), but we have not chosen

to pursue this point.
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